动态规划及应用-最大子序和-N阶楼梯上楼问题

算法设计与分析_动态规划及应用

问题1:

【最大子序和】给定的长度为N(1≤N≤105 )的整数数组A,其“子序和”定义为:A中非空的一段连续元素之和。现在要找出

问题2:

【N阶楼梯上楼问题】N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式。例如,当楼梯只有一阶时,只有一种方法;当楼梯有两阶时,可以每次跨一阶,跨两次,也可以每次跨两阶,跨一次,因此有两种方法。

问题分析

问题总结分析:

针对这两个题的综合分析会发现,不管是【最大子序和】,还是【N阶楼梯上楼问题】,以传统的分治递归等算法求解时,会有大量的重叠子问题,每次都要对这些重叠子问题递归求解,以【N阶楼梯上楼问题】为例,在函数内部,我们可以使用分治思想,将问题拆分成两个子问题:

  1. 爬上 1 级台阶,然后递归处理剩下的 n-1 级台阶。
  2. 爬上 2 级台阶,然后递归处理剩下的 n-2 级台阶。

在过程中这两个子问题会重叠求解一些子问题,大大的提高了时间复杂度。所以根据所学动态规划的算法,减少子问题的重复计算,通过合理地调度子问题的执行顺序,增加一定的空间开销,用来子问题的结果的组织和存取,在求解大问题时,所需子问题的解早已经求得,只需直接使用即可,不必重复计算,显著节省了时间开销。

针对【最大子序和】问题的设计分析:

首先,为了保存子问题的最大子列和结果,我们先定义一个f[n]数组,其中的f[i]表示以第i个元素结尾的最大子序和的结果 ,这样表示的原因是因为我们最终要求的是整个数组的最大子序和,而以第 i-1个元素结尾的最大子序和可以帮助我们计算出以第 i个元素结尾的最大子序和,进而求出整个数组的最大子序和。

其次,根据上面的分析过程,根据f[i]含义可初始化f[0]=num[0];也就是说以第0个元素结尾的最大子列和的结果就是第0个数本身,符合最优子结构的思想,即子问题的解也是最优解。还可以看出,在求解f[i]的结果时,用到了f[i-1]的结果,所以我们求解顺序为先求出f[i-1]后,再求f[i],这就是本题动态规划调度子问题的执行顺序,找到这个"序"是解决本问题的核心之一,本题我们通过for循环使i从1循环到n,在求f[1]时,通过已知的f[0]求得,在求f[2]时,通过刚才求得并保存在数组中的f[1]求得,以此类推,便可求得f[0]到f[n];因为本题为求解最大子序和,所以最后我们只需要从f[1]到f[n]中找出最大值即为本题最后的答案。

最后,讨论本题的核心问题,即如何在已知第 i-1个元素结尾的最大子序和的结果前提下,去求得以第 i个元素结尾的最大子序和,这是解决本问题的关键,通过对f[i-1]状态的分析,可分为两种情况,当f[i-1]<=0时,即第i-1个元素结尾的最大子序和的结果小于等于0时, f[i]=num[i],即以第i个元素结尾的最大子序和的结果为第 i个元素num[i] ;当f[i-1]>0时,f[i]=f[i-1]+num[i],即以第i个元素结尾的最大子序和的结果为第i-1个元素结尾的最大子序和的结果加上第 i个元素num[i],只有这样,所求f[i]才符合f[i]表示以第i个元素结尾的最大子序和的结果的条件,从而,才能求出【最大子序和】问题的正确结果。

针对【N阶楼梯上楼问题】的设计分析:

首先,为了保存子问题的方法总数结果,我们先定义一个f[n]数组,其中的f[i]表示到达第i阶台阶的方法总数 ,这样表示的原因是因为我们最终要求的是到达第n个楼阶的方法总数,即f[n],而通过分析可得到达第i-1个楼阶的方法总数f[i-1]和到达第i-2个楼阶的方法总数f[i-2]相加可以求得我们计算出到达第i个楼阶的方法总数,原因是因为每次可以走一阶或者走两阶,所以可以通过第i-1阶走1阶到达第i阶,也可以通过第i-2阶走2阶到达第i阶,所以到达第i阶的方法总数=到达第i-1阶的方法总数+到达第i-2阶的方法总数,进而能求出到达第n个楼阶的方法总数。

其次,根据上面的分析过程,根据f[i]含义可初始化f[0]=1;即0阶,原地不动,将其看作为1种方法;f[1]=1,即1阶,只有一次一格跳一次可达,将其看作为1种方法;符合最优子结构的思想,即子问题的解也是最优解。所以在求解到达第i阶的方法总数时,只需要把到达i-1阶的方法总数加上到达i-2的方法总数即可,所以本问题的“序”就是i从2到n,依次求出f[i],例如f[2]=f[1]+f[0],f[3]=f[2]+f[1],依次类推,所求f[n]即为到达第n阶楼阶的方法总数。至此证明完成。

算法设计

问题1:

#include <stdio.h>
int n;//有n个整数
int num[100005]={0};//整数数组 
int f[100005]={0};//f[i]表示以第i个元素结尾的最大子序和的结果 
int main()
{
	scanf("%d",&n);//输入整数个数 
	for(int i=0;i<n;i++)//向数组中存入n个整数 
	scanf("%d",&num[i]);
	f[0]=num[0];//根据f[i]含义初始化f[0];
//采用动态规划的思想,从f[1]求到f[n-1];这就是本题动态规划的"序" 
	for(int i=1;i<n;i++)
	{
		if(f[i-1]<=0)//如果第i-1个元素结尾的最大子序和的结果小于等于0时 
		  f[i]=num[i];//以第i个元素结尾的最大子序和的结果为num[i] 
		else//如果第i-1个元素结尾的最大子序和的结果大于0时 
		  f[i]=f[i-1]+num[i]; //以第i个元素结尾的最大子序和的结果为num[i]加上第i-1个元素结尾的最大子序和的结果 
	 } 
//以下为找f[n]中的最大值也就是所有子序和的最大值 
	 int max=f[0];
	 for(int i=1;i<n;i++)
	  {
	  	if(f[i]>max)
	  	 max=f[i];
	  }
printf("%d",max);//输出所有子序和的最大值  
 } 

通过使用动态规划算法,可以实现求所有子序和的最大值问题的时间复杂度为:O(n)。

问题二:

#include <stdio.h>
int n;//楼梯阶数 
int f[50]={0};//f[i]表示到达第i阶台阶的方法总数; 
int main()
{
	scanf("%d",&n);//输入楼梯阶数n 
	//根据f[i]定义,初始化f[0]和f[1]; 
	f[0]=1;//0阶,原地不动,将其看作为1种方法
	f[1]=1;//1阶,只有一次一格跳一次可达,初始化为1
//采用动态规划的思想,从f[2]求到f[n];这就是本题动态规划的"序"  
	for(int i=2;i<=n;i++)
	{
		f[i]=f[i-1]+f[i-2];//在求f[i]时,f[i-1]和f[i-2]早已求出,可直接使用 
	}
	printf("%d",f[n]);//输出到达第n阶台阶的方法总数;
 } 

通过使用动态规划算法,可以实现求N阶楼梯上楼问题的时间复杂度为:O(n)。

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值