011利用数组解方程

博客介绍了使用Python求解方程组未知数的方法。先定义3x3的系数矩阵数组W和方程结果数组result,接着用np.linalg.inv函数计算W的逆矩阵W_inv,再通过np.dot函数进行矩阵乘法运算,得到未知数向量vxyz,最后打印出解得的未知数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 导入数学计算模块numpy
import numpy as np

'''
方程式为:
x+y+z=26
x-y=1
2x-y+z=18
'''
# 生成未知数系数的三维数组,注意位置对应
W = np.array([[1, 1, 1], [1, -1, 0], [2, -1, 1]])
# 由方程的值形成的数组
result = np.array([26, 1, 18])
# 求得W逆矩阵W_inv
W_inv = np.linalg.inv(W)
# 由方程未知数(x、y、z)形成的数组:vxyz=np.array([x,y,z]),
# 得到以上方程式的矩阵乘法等式:W*vxyz=result,
# 让等式两边点乘W的逆矩阵,
# 得到等式:np.dot(W_inv,W*vxyz)=np.dot( W_inv,result),
# 其中W_inv是W的逆矩阵,np.dot()是矩阵点乘函数,
# 由于矩阵与其逆矩阵相乘得1,进一步推导出vxyz= np.dot( W_inv,result)。
# 求得vxyz的值,即求各未知数组成数组
vxyz = np.dot(W_inv, result)
# 打印出求得的系数
# print(vxyz)
v = list(vxyz)
print('得到的值:')
print('x=%d' % v[0])
print('y=%d' % v[1])
print('z=%d' % v[2])

这段代码是用于解方程组的数学计算代码。它使用了numpy库来进行矩阵计算。

首先,定义了一个3x3的数组W,用来表示方程组的系数矩阵。数组W的第一行表示第一个方程的系数,第二行表示第二个方程的系数,依此类推。

接下来,定义了一个包含方程结果的数组result,该数组的元素按照方程组的结果顺序排列。

然后,通过np.linalg.inv函数计算出矩阵W的逆矩阵W_inv。

最后,通过np.dot函数进行矩阵乘法运算,求解未知数的值。具体而言,使用W_inv与result的点乘得到了未知数的向量vxyz。

最后,将解得的未知数打印出来,分别对应x、y、z的值。

希望以上解释对您有所帮助,如果对代码还有其他疑问,可以随时提出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是梦磊OL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值