微信小程序获取用户手机号码教程(前端+后端)

本文详细介绍了如何在微信小程序中通过前端按钮触发获取用户手机号的功能,包括前端使用Uniapp的代码示例,以及后端Springboot处理请求获取手机号的代码。还提到获取手机号功能对小程序认证状态的要求和获取用户头像的流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

在开发一款微信小程序时,需要用户进行微信登录,获取用户的手机号码来作为用户的唯一标识(userId),于是探索获取用户手机号码的方式;

(当然,通过wx.login来获取code,进而换取用户的openid也是可以的)

目前版本的微信小程序获取用户手机号码的方式如下:

前端开发参考:获取手机号 | 微信开放文档

后端开发参考:手机号快速验证组件 | 微信开放文档

步骤如下:

①利用手机号快速填写的功能,将button组件 open-type 的值设置为 getPhoneNumber

②用户点击按钮,弹出申请获取用户手机号的弹窗:

③如果用户点击允许,则可以通过bindgetphonenumber事件回调获取到动态令牌code(注意这里的code和wx.login的code不一样,而且获取用户手机号码不需要提前调用wx.login获取code了)

④把code传到开发者后台,并在开发者后台调用微信后台提供的 phonenumber.getPhoneNumber 接口,消费code来换取用户手机号

注意一点,获取手机号的功能好像只允许经过认证的小程序使用,如果未认证只能使用测试号才可以

否则便会报错:

2.前端代码

开发环境:Uniapp框架

微信小程序调试基础库的版本:2.32.1

基本思路:通过按钮绑定监听事件,获取用户授权,得到code,传到后端换取用户手机号:

代码如下:

按钮:

<button open-type="getPhoneNumber" class="login_button" @getphonenumber="login" v-show="!logged">登录</button>
 

login函数:

//登录按钮

login(e) {
  console.log(e)
  var detail = e.detail
  if (detail.errMsg == "getPhoneNumber:ok") {
    console.log("用户同意授权")
    var code = detail.code
    uni.request({
      url: "http://localhost:8081/getPhoneNumber", //调用接口
      method: 'POST',
      header: {
        'content-type': 'application/json'
      },
      data: {
        code: code, //请求体中封装code
      },
      success(e) {
        console.log(e)
        var userId = e.data.phone_info.purePhoneNumber;
        uni.setStorage({
          key: "userId",
          data: userId,
          success() {
            uni.switchTab({
              url: "../../pages/homePage/homepage"
            })
          }
        })
      },
      fail(e) {
        uni.showModal({
          title: "错误!",
          content: "网络错误!",
          complete() {
          }
        })
      }
    })
  }
}

3.后端代码

开发环境:springboot

开发工具:idea

如果对于idea创建springboot项目有任何问题,可以参考的这一篇文章的后端代码部分:

百度翻译API使用教程(前端+后端)-CSDN博客

代码展示如下:

@RestController
    public class PhoneNumberController {
 
        @PostMapping("/getPhoneNumber")
        public Object getPhoneNumber(@RequestBody Map<String,Object> data)
        {
            //通过appid和secret来获取token
            //WXContent.APPID是自定义的全局变量
            String tokenUrl = String.format("https://api.weixin.qq.com/cgi-bin/token?grant_type=client_credential&appid=%s&secret=%s", WXContent.APPID, WXContent.APPSECRET);
            JSONObject token = JSON.parseObject(HttpUtil.get(tokenUrl));
 
            //通过token和code来获取用户手机号
            String url = "https://api.weixin.qq.com/wxa/business/getuserphonenumber?access_token=" + token.getString("access_token");
 
            //封装请求体
            Map<String, String> paramMap = new HashMap<>();
            paramMap.put("code", data.get("code").toString());
 
            //封装请求头
            HttpHeaders headers = new HttpHeaders();
            headers.setContentType(MediaType.APPLICATION_JSON);
 
            HttpEntity<Map<String, String>> httpEntity = new HttpEntity<>(paramMap,headers);
 
            //通过RestTemplate发送请求,获取到用户手机号码
            RestTemplate restTemplate = new RestTemplate();
            ResponseEntity<Object> response = restTemplate.postForEntity(url, httpEntity, Object.class);
 
            //返回到前端展示
            return response.getBody();
        }
    }

4.结果展示

在我的前端代码中有缓存用户id的功能,如果成功登录,即可在缓存中查看到用户id,如下:

5.补充:获取用户头像

微信小程序获取用户信息的功能好像挺离谱的,一直改来改去,目前大多是通过点击头像申请获取微信头像来实现

<button class="mine_avatar_wrapper" open-type="chooseAvatar" @chooseavatar="onChooseAvatar">
  <image class="mine_image" :src="avatarUrl"></image>
</button>


通过open-type绑定选择用户头像的功能,然后点击按钮即可弹出弹窗:

而onChooseAvatar函数则是获取到微信头像后渲染到页面上

onChooseAvatar(e)
    {
            this.avatarUrl = e.detail.avatarUrl
            uni.setStorageSync('avatarUrl',this.avatarUrl)
    },

如果有什么问题,欢迎留言讨论,如果有错误的话欢迎指正,谢谢大家~

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋の本名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值