1.数据聚合
1.1.聚合的种类
聚合常见的有三类:
-
桶(Bucket)聚合:用来对文档做分组
-
TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
-
Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
-
-
度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
-
Avg:求平均值
-
Max:求最大值
-
Min:求最小值
-
Stats:同时求max、min、avg、sum等
-
-
管道(pipeline)聚合:其它聚合的结果为基础做聚合
注意:参加聚合的字段必须是keyword、日期、数值、布尔类型
可分词的字段不能参与聚合(会影响聚合的结果)
1.2.DSL实现聚合
现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。
1.2.1.Bucket聚合语法
语法如下:
GET /hotel/_search
{
"size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果
"aggs": { // 定义聚合
"brandAgg": { //给聚合起个名字
"terms": { // 聚合的类型,按照品牌值聚合,所以选择term
"field": "brand", // 参与聚合的字段
"size": 20 // 希望获取的聚合结果数量
}
}
}
}
示例:
要求:统计酒店各个品牌的总数量
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
1.2.2.聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为count,并且按照count降序排序。
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"order": {
"_count": "asc" // 按照_count升序排列
},
"size": 20
}
}
}
}
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"order": {
"_count": "desc"
},
"size": 20
}
}
}
}
# 聚合分桶
GET /hotel/_search
{
"query": {
"match_all": {}
},
"size": 0,
"aggs": {
"brandAggName": {
"terms": {
"field": "brand",
"size": 10
}
},
"cityAggName":{
"terms": {
"field": "city",
"size": 10
}
}
}
}
# 排序
GET /hotel/_search
{
"query": {
"match_all": {}
},
"size": 0,
"aggs": {
"brandAggName": {
"terms": {
"field": "brand",
"size": 20,
"order": {
"_count": "asc"
}
}
},
"cityAggName":{
"terms": {
"field": "city",
"size": 10
}
}
}
}
1.2.3.限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search
{
"query": {
"range": {
"price": {
"lte": 200 // 只对200元以下的文档聚合
}
}
},
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
# 限定聚合范围
GET /hotel/_search
{
"query": {
"range": {
"price": {
"gte": 1000,
"lte": 3000
}
}
},
"size": 0,
"aggs": {
"brandAggName": {
"terms": {
"field": "brand",
"size": 20,
"order": {
"_count": "asc"
}
}
},
"cityAggName":{
"terms": {
"field": "city",
"size": 10
}
}
}
}
1.2.4.Metric聚合语法
上节中,我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。
这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
语法如下:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
},
"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
"score_stats": { // 聚合名称
"stats": { // 聚合类型,这里stats可以计算min、max、avg等
"field": "score" // 聚合字段,这里是score
}
}
}
}
}
}
要求根据酒店的品牌来统计个数,再次基础上统计各个桶中的price聚合数据,并按照price中聚合数据的avg进行排序。
# 桶内度量: 统计
GET /hotel/_search
{
"query": {
"match_all": {}
},
"size": 0,
"aggs": {
"brandAggName": {
"terms": {
"field": "brand",
"size": 20,
"order": {
"price_status.avg": "desc"
}
},
"aggs": {
"price_status": {
"stats": {
"field": "price"
}
}
}
}
}
}
这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。
另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:
# 对分桶后的数据进行聚合统计
GET /hotel/_search
{
"size": 0,
"query": {
"range": {
"price": {
"gte": 200,
"lte": 500
}
}
},
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20,
"order": {
"_count": "asc"
}
},
"aggs": {
"score_stats": {
"stats": {
"field": "price"
}
},
"score_avg": {
"avg": {
"field": "price"
}
},
"score_max": {
"max": {
"field": "price"
}
}
}
}
}
}
GET /hotel/_search
{
"size": 0,
"query": {
"range": {
"price": {
"gte": 200,
"lte": 500
}
}
},
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20,
"order": {
"score_max": "asc" # 可以根据聚合函数处理的结果进行排序
}
},
"aggs": {
"score_stats": {
"stats": {
"field": "score"
}
},
"score_avg": {
"avg": {
"field": "price"
}
},
"score_max": {
"max": {
"field": "price"
}
}
}
}
}
}
1.2.5.小结
aggs : 聚合的声明,与query同级别
query : 与聚合一起使用时,可以限定聚合数据
聚合必须的三要素:
- **聚合名称**: 给聚合起个名字,随意取名,做到见名知意即可
- **聚合类型**: max,min,avg,stats
- 聚合字段: 指定聚合字段后,聚合只对该字段生效
**聚合可配置属性有**:
- size:指定聚合结果数量
- order:指定聚合结果排序方式
- field:指定聚合字段
# 小结
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 10,
"order": {
"_count": "desc"
}
},
"aggs": {
"brandCityAgg": {
"terms": {
"field": "city",
"size": 10,
"order": {
"price_avg": "desc"
}
}
}
}
}
}
}