图像去雾技术大揭秘:2024-2025年CVPR、ICCV、ECCV顶会论文分类解析

无监督去雾算法论文整理

在图像去雾领域,每年都有大量的研究论文发表,这些论文针对去雾过程中的各种问题提出了众多创新性的解决方案。为了更好地理解和把握该领域的研究动态,我将2024年和2025年发表在CVPR、ICCV、ECCV这三个顶会的去雾相关论文进行了分类整理,以下是详细内容。

2024年论文(27篇)

1. 去雾-去噪耦合不一致

原因:现有方法分阶段处理去雾和去噪,导致误差积累,影响图像质量。

后果:去雾后的图像可能出现噪声放大,或去噪后的图像去雾不彻底,整体质量下降。

  • 《U2D2Net: Unsupervised Unified Image Dehazing and Denoising Network for Single Hazy Image Enhancement》发表于CVPR,该论文提出了一种无监督的联合去雾和去噪网络,旨在同时处理去雾和去噪任务,减少误差积累,提升图像质量。

  • 《Joint image dehazing and denoising for single haze image enhancement》发表于ICCV,此论文聚焦于联合图像去雾和去噪技术,以实现单一雾霾图像的增强,通过联合处理两个任务,提高图像的视觉效果和细节表现。

2. 去雾结果多解性 + 用户对去雾风格/强度的主观选择

原因:去雾结果存在多种可能性,用户对去雾风格或强度有不同需求。

后果:缺乏有效的控制机制,可能导致去雾结果不符合用户期望,影响实际应用效果。

  • 《Illumination Controllable Dehazing Network based on Unsupervised Retinex Embedding》发表于ECCV,该论文提出了一种基于无监督Retinex嵌入的光照可控去雾网络,使用户能够根据需求调整去雾后的图像光照效果,满足不同场景下的去雾风格要求。

3. 数据分布不一致+生成的图像缺乏有效的约束

原因:数据分布差异导致生成器学习混淆,缺乏约束使生成图像质量差。

后果:生成的去雾图像可能丢失细节、颜色失真,影响后续处理和应用效果。

  • 《Unsupervised Bidirectional Contrastive Reconstruction and Adaptive Fine-Grained Channel Attention Networks for image dehazing》发表于CVPR,论文引入了无监督的双向对比重建和自适应细粒度通道注意网络,以改善图像去雾效果,增强生成图像的质量和稳定性。

  • 《Unsupervised multi-branch network with high-frequency enhancement for image dehazing》发表于ICCV,此论文提出了一种具有高频增强功能的无监督多分支网络,用于图像去雾,通过多分支结构和高频增强技术,提升去雾图像的细节表现和整体质量。

  • 《Robust Unpaired Image Dehazing via Adversarial Deformation Constraint》发表于ECCV,该论文通过对抗变形约束技术,实现鲁棒的无配对图像去雾,确保生成的无雾图像在保持图像内容的同时,具有良好的视觉效果和真实性。

4. 缺乏成对的干净数据+需要大量的计算和内存

原因:现实场景中获取成对的雾霾和清晰图像困难,且处理大量数据计算成本高。

后果:模型训练受限,泛化能力不足,实际应用中去雾效果不稳定。

  • 《Joint dual-teacher distillation and unsupervised fusion for unpaired real-world image dehazing》发表于CVPR,论文结合了联合双教师蒸馏和无监督融合技术,用于无配对真实世界图像去雾,降低对成对数据的依赖,同时提高去雾效率和效果。

  • 《Unpaired Remote Sensing Image Dehazing Using Enhanced Skip Attention-Based Generative Adversarial Networks with Rotation Invariance》发表于ICCV,该论文提出了一种具有旋转不变性的增强跳转注意力生成对抗网络,用于无配对遥感图像去雾,解决数据不足和计算资源需求高的问题。

5. 雾图图像质量差,图片模糊,对比度较低

原因:雾霾导致图像模糊、对比度低,物体边缘和特征不清晰。

后果:影响目标检测、识别等任务的精度和可靠性,限制了实际应用场景。

  • 《UIDF-Net: Unsupervised Image Dehazing and Fusion Utilizing GAN and Encoder-Decoder》发表于CVPR,论文介绍了UIDF-Net,一种利用生成对抗网络和编码器-解码器结构的无监督图像去雾和融合网络,提升图像质量,增强边缘和细节信息。

  • 《HDUD-Net: heterogeneous decoupling unsupervised dehaze network》发表于ICCV,此论文提出了HDUD-Net,一种异构解耦无监督去雾网络,通过解耦不同特征,提高去雾图像的清晰度和对比度,改善视觉效果。

  • 《An Unsupervised Dehazing Network With Hybrid Prior Constraints for Hyperspectral Image》发表于ECCV,该论文针对高光谱图像去雾,提出了一种具有混合先验约束的无监督去雾网络,利用先验知识指导去雾过程,提升图像质量。

  • 《DehazeDNet: image dehazing via depth evaluation》发表于CVPR,论文介绍了DehazeDNet,通过深度评估实现图像去雾,考虑图像的深度信息,提高去雾图像的层次感和真实感。

  • 《An Unsupervised Image Dehazing Method Using Patch-Line and Fuzzy Clustering-Line Priors》发表于ICCV,此论文提出了一种基于补丁线和模糊聚类线先验的无监督图像去雾方法,利用先验知识约束去雾过程,改善图像质量。

  • 《Unsupervised single image dehazing - A contour approach》发表于ECCV,该论文探讨了一种无监督单图像去雾的轮廓方法,通过分析图像轮廓信息,指导去雾过程,增强图像边缘和细节。

  • 《Unpaired Remote Sensing Image Dehazing Using Enhanced Skip Attention-Based Generative Adversarial Networks with Rotation Invariance》发表于CVPR,论文提出了一种具有旋转不变性的增强跳转注意力生成对抗网络,用于无配对遥感图像去雾,提升图像的清晰度和对比度。

  • 《A typhoon optimization algorithm and difference of CNN integrated bi-level network for unsupervised underwater image enhancement》发表于ICCV,此论文结合台风优化算法和卷积神经网络,提出了一种双层网络结构,用于无监督水下图像增强,改善图像质量。

  • 《Dehaze-TGGAN: Transformer-Guide Generative Adversarial Networks With Spatial-Spectrum Attention for Unpaired Remote Sensing Dehazing》发表于ECCV,该论文提出了Dehaze-TGGAN,一种具有空间-光谱注意力机制的Transformer引导生成对抗网络,用于无配对遥感图像去雾,提升去雾效果。

6. 去雾潜力不足、频域信息缺失、缺少成对数据

原因:传统方法只关注空间域信息,忽略频域信息,且缺乏成对数据限制模型性能。

后果:去雾效果不全面,图像细节和可见性提升有限,泛化能力不足。

  • 《DFP-Net: An unsupervised dual-branch frequency-domain processing framework for single image dehazing》发表于CVPR,论文介绍了DFP-Net,一种无监督的双分支频域处理框架,用于单图像去雾,通过频域信息的利用,提高去雾图像的质量和细节表现。

7. 端到端泛化能力差+缺少成对数据

原因:监督学习需要大量成对数据,现实场景中难以获取,导致模型泛化能力弱。

后果:模型在实际应用中对不同场景和条件下图像的适应性差,去雾效果不稳定。

  • 《DehazeDNet: image dehazing via depth evaluation》发表于ICCV,论文介绍了DehazeDNet,通过深度评估实现图像去雾,提高模型在真实场景中的泛化能力。

8. 域偏移问题

原因:合成数据与真实数据分布差异,导致模型在真实数据上表现不佳。

后果:模型在实际应用中去雾效果不理想,难以适应不同域的图像数据。

  • 《UCL-Dehaze: Toward Real-World Image Dehazing via Unsupervised Contrastive Learning》发表于CVPR,论文提出了一种基于无监督对比学习的图像去雾方法UCL-Dehaze,旨在解决域偏移问题,提高模型在真实世界图像上的去雾性能。

  • 《Physical-prior-guided single image dehazing network via unpaired contrastive learning》发表于ICCV,此论文提出了一种物理先验引导的单图像去雾网络,通过无配对对比学习,解决域偏移问题,提升去雾效果。

9. 域级样式丢失导致的去雾特征建模不准确+全局判别器误判导致的雾霾残留

原因:CycleGAN框架下域级样式对齐软约束和全局判别器误判,导致特征建模不准确和雾霾残留。

后果:去雾后的图像可能仍存在雾霾残留,细节和结构信息丢失,影响图像质量和后续处理。

  • 《PSD-ELGAN: A pseudo self-distillation based CycleGAN with enhanced local adversarial interaction for single image dehazing》发表于ECCV,论文提出了一种基于伪自蒸馏的CycleGAN,具有增强的局部对抗交互,用于单图像去雾,提高去雾特征的建模准确性,减少雾霾残留。

10. 信息不对称+雾霾建模不足

原因:传统CycleGAN去雾模型对两个分支的重视程度不同,导致信息不对称和雾霾建模不足。

后果:生成的雾霾图像质量差,缺乏真实感,影响去雾网络的训练和性能。

  • 《HEDehazeNet: Unpaired image dehazing via enhanced haze generation》发表于CVPR,论文介绍了HEDehazeNet,通过增强的雾霾生成方法实现无配对图像去雾,改善雾霾建模,提高去雾效果。

11. 缺乏配对数据+去雾过程缺乏对中间过程和图像先验的利用

原因:缺乏配对数据限制模型训练,且未充分利用中间过程和先验知识。

后果:模型泛化能力受限,去雾结果与真实无雾图像存在较大偏差,影响实际应用效果。

  • 《TSID-Net: a two-stage single image dehazing framework with style transfer and contrastive knowledge transfer》发表于ICCV,论文提出了TSID-Net,一种两阶段的单图像去雾框架,结合风格转移和对比知识转移,充分利用中间过程和图像先验,提升去雾效果。

2025年论文(4篇)

1. 端到端泛化能力差+缺少成对数据

原因:监督学习需要大量成对数据,现实场景中难以获取,导致模型泛化能力弱。

后果:模型在实际应用中对不同场景和条件下图像的适应性差,去雾效果不稳定。

  • 《Unsupervised single-image dehazing via self-guided inverse-retinex GAN》发表于CVPR,论文提出了一种无监督的单图像去雾方法,通过自引导的逆Retinex GAN,提高模型的泛化能力和去雾效果。

  • 《Toward Generalized and Realistic Unpaired Image Dehazing via Region-Aware Physical Constraints》发表于ICCV,此论文探讨了一种具有区域感知物理约束的通用且真实的无配对图像去雾方法,通过引入物理约束,提升模型的泛化能力和去雾质量。

2. 域偏移问题

原因:合成数据与真实数据分布差异,导致模型在真实数据上表现不佳。

后果:模型在实际应用中去雾效果不理想,难以适应不同域的图像数据。

  • 《Addressing domain discrepancy: A dual-branch collaborative model to unsupervised dehazing》发表于ECCV,论文提出了一种双分支协作模型,用于无监督去雾,通过双分支结构,有效解决域偏移问题,提高模型的适应性和去雾效果。

3. 在物理属性估计时缺乏监督+缺乏语义区域信息,忽略空间上的几何关系

原因:无监督方法缺乏物理属性估计的约束,且未利用语义区域信息和空间几何关系。

后果:物理属性估计不准确,导致去雾结果不自然、存在伪影,影响图像质量和后续处理。

  • 《Toward Generalized and Realistic Unpaired Image Dehazing via Region-Aware Physical Constraints》发表于CVPR,论文提出了一种具有区域感知物理约束的无配对图像去雾方法,通过引入物理约束和区域感知机制,提高去雾结果的准确性和自然度。

以上是2024年和2025年发表在CVPR、ICCV、ECCV这三个顶会的去雾相关论文的分类整理,希望对大家了解该领域的研究进展有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值