目录
一. 结构体
1.1 结构体类型的声明
结构体实际上是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
以下是用结构体类型来描述一个人:
struct people
{
char name[20];//姓名
int age;//年龄
char gender[5];//性别
};//注意分号
除此之外,我们可以用typedef来给这个结构体重新命名:
typedef struct People
{
char name[20];
int age;
char gender[5];
}people;
以上两个代码区别在于定义结构体变量的时候,例如当用第一段代码进行定义时:
struct people { char name[20];//姓名 int age;//年龄 char gender[5];//性别 };//注意分号 int main() { struct people p1; return 0; }
当用第二段代码进行定义时:
typedef struct People { char name[20]; int age; char gender[5]; }people; int main() { people p1; return 0; }
在定义结构体时,我们可以定义匿名结构体类型:
//匿名结构体类型 struct { int a; char b; float c; }x; struct { int a; char b; float c; }a[20], *p;
注意:编译器会把上面两个声明当成完全不同的两个类型,不能写以下一行代码:
p = &x;
1.2结构体的自引用
在结构体中可以包含一个类型为该结构体本身的成员,但要写成指针的形式,例如:
struct Node { int data; struct Node* next; };
typedef struct Node { int data; struct Node* next; }Node;
1.3 结构体变量的定义和初始化
直接上代码:
struct Point
{
int x;
int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = { 2, 3 };
struct Stu //类型声明
{
char name[15];//名字
int age; //年龄
};
struct Stu s = { "zhangsan", 20 };//初始化
struct Node
{
int data;
struct Point p;
struct Node* next;
}n1 = { 10, {4,5}, NULL }; //结构体嵌套初始化
struct Node n2 = { 20, {5, 6}, NULL };//结构体嵌套初始化
1.4 结构体内存对齐
结构体的大小如何计算呢? 引入一个概念:内存对齐。给出以下代码:
int main()
{
struct S2
{
char c1;
char c2;
int i;
};
printf("%d\n", sizeof(struct S2));
struct S3
{
double d;
char c;
int i;
};
printf("%d\n", sizeof(struct S3));
//结构体嵌套问题
struct S4
{
char c1;
struct S3 s3;
double d;
};
printf("%d\n", sizeof(struct S4));
}
运行结果:
S3结果解释:
首先得掌握结构体的对齐规则:
1. 第一个成员在与结构体变量偏移量为0的地址处。
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
VS中默认的值为8Linux 系统中没有默认对齐数字
3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
那为什么会存在内存对齐呢?
1. 平台原因(移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。
原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
因此,在设计结构的时候,既要满足内存对齐,又要节省空间,应该让占用空间小的成员尽量集中在一起。
1.5 结构体传参
struct S
{
int data[1000];
int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
printf("%d\n", ps->num);
}
int main()
{
print1(s); //传结构体
print2(&s); //传地址
return 0;
}
首选print2()函数,因为函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。
1.6 位段
位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字
struct A
{
int _a:2;
int _b:5;
int _c:10;
int _d:30;
};
二. 枚举
2.1 枚举类型的定义
枚举类型(Enumeration type)是一种在程序中定义命名常量集合的数据类型。枚举类型定义了一组可取值的符号名称,这些名称称为枚举常量或枚举成员。每个枚举常量都与一个整数值相关联,表示该常量在枚举中的位置。c语言中代码示例:
int main() { enum Day//星期 { Mon, Tues, Wed, Thur, Fri, Sat, Sun }; enum Sex//性别 { MALE, FEMALE, SECRET }; enum Color//颜色 { RED, GREEN, BLUE }; return 0; }
以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值。
例如:
enum Color//颜色 { RED = 1, GREEN = 2, BLUE = 4 };
2.2 枚举的优点
我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:
1. 增加代码的可读性和可维护性
2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
3. 防止了命名污染(封装)
4. 便于调试
5. 使用方便,一次可以定义多个常量
2.3 枚举的使用
enum Color//颜色
{
RED = 1,
GREEN = 2,
BLUE = 4
};
enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异
三. 联合
3.1 联合类型的定义
联合也是一种特殊的自定义类型
这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
比如://联合类型的声明 union Un { char c; int i; }; //联合变量的定义 union Un un; //计算连个变量的大小 printf("%d\n", sizeof(un));
3.2 联合的特点(判断大小端)
联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。
我们可以用联合判断编译器的大小端存储:
int check_sys()
{
int i = 1;
return *(char*)(&i);
}
int check_sys1()
{
union Un
{
int i;
char ch;
}un;
un.i = 1;
return un.ch;
}
int main()
{
int ret = 0;
int ret1 = 0;
ret = check_sys();
ret1 = check_sys1();
if (ret)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
if (ret1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
3.3 联合大小的计算
联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
union Un1
{
char c[5];
int i;
};
union Un2
{
short c[7];
int i;
};
int main()
{
printf("%d\n", sizeof(union Un1));
printf("%d\n", sizeof(union Un2));
return 0;
}
四. 总结
以上是我对结构体,枚举类型以及联合类型的理解。