没写完,明天弄。
为什么使用知识图谱?
痛点
-
使用多源异构数据有诸多困难,难以统一;
-
传统的LLM推理能力不好(幻觉问题),但信息有很碎片化,需要一个方法将知识整合到一起;
-
医学这样的专业领域,希望生成的回答能有证据支撑,因此使用rag和知识图谱
-
只是用RAG的问题在于,在“多跳问答”的处理上不好,因此需要知识图谱
-
当前RAG只是用检索最匹配的段落,忽略了其他相关信息,但又引入了其他噪声的干扰
-
推理能力需要借助知识图谱
-
训练数据不足时需要借助知识图谱进行建模
-
-
为什么使用RAG?
https://dialogue-conf.org/wp-content/uploads/2025/04/GalitskyBIlvovskyDMorkovkinA.110.pdf
当前RAG的瓶颈:
-
多跳问答任务表现不佳
-
难以处理需要多步推理的复杂问题
-
多步推理:问题解析——检索相关文档——信息整合——生成答案
-
-
检索机制的局限性
-
返回噪声或不相关段落
-
生成答案可能与检索证据矛盾
-
现有改进策略的不足:
-
重排序、条件检索等方法效果有限
-
计算成本高昂,对标注质量敏感
论文的解决方法:
知识图谱+话语分析 辅助RAG,从而提升答案的连贯性和鲁棒性。
-
使用知识图谱提供结构化、低噪声的知识表示,更适合长尾问题和复杂推理;
-
使用话语分析,理解句子之间的关系,超越表面语法,同时提升了上下文理解、内容组织和答案过滤。
符合性预测
-
构建预测集合top-K,保证包含正确答案的概率
-
不返回单一答案,而是提供一组候选答案
Retriever Set保证检索到相关段落,LLM Set保证生成答案语义正确。
此外还使用了拉丁超立方抽样,提升语义覆盖度,更均衡的探索置信空间。
自我反思RAG:提升检索与生成质量
LLM在生成答案的同时进行自我反思与批判,生成反思/批评标记(tokens),如:is_supported,is_relevant
工作流程:接收用户查询——检索相关文档——生成候选答案——自我反思与评估——输出最终答案。
优势:
-
有效排序不同检索结果的候选答案
-
部分提升答案的groundedness和上下文一致性
不足:
-
难以处理不相关或者误导信息
-
在复杂查询表现不佳
本文改进:
-
结合话语分析,评估答案与问题的修辞关系
-
提升答案的语义grounding和语境适当性
增加知识图谱辅助
。。。
AMR提取句子深层含义
。。。