别人的论文为什么这样构思?

没写完,明天弄。

为什么使用知识图谱?

痛点

  1. 使用多源异构数据有诸多困难,难以统一;

  2. 传统的LLM推理能力不好(幻觉问题),但信息有很碎片化,需要一个方法将知识整合到一起;

  3. 医学这样的专业领域,希望生成的回答能有证据支撑,因此使用rag和知识图谱

  4. 只是用RAG的问题在于,在“多跳问答”的处理上不好,因此需要知识图谱

    1. 当前RAG只是用检索最匹配的段落,忽略了其他相关信息,但又引入了其他噪声的干扰

    2. 推理能力需要借助知识图谱

    3. 训练数据不足时需要借助知识图谱进行建模

为什么使用RAG?

https://dialogue-conf.org/wp-content/uploads/2025/04/GalitskyBIlvovskyDMorkovkinA.110.pdf

当前RAG的瓶颈:

  1. 多跳问答任务表现不佳

  2. 难以处理需要多步推理的复杂问题

    1. 多步推理:问题解析——检索相关文档——信息整合——生成答案

  3. 检索机制的局限性

    1. 返回噪声或不相关段落

    2. 生成答案可能与检索证据矛盾

现有改进策略的不足:

  1. 重排序、条件检索等方法效果有限

  2. 计算成本高昂,对标注质量敏感

论文的解决方法:

知识图谱+话语分析 辅助RAG,从而提升答案的连贯性和鲁棒性。

  1. 使用知识图谱提供结构化、低噪声的知识表示,更适合长尾问题和复杂推理;

  2. 使用话语分析,理解句子之间的关系,超越表面语法,同时提升了上下文理解、内容组织和答案过滤。

符合性预测

  1. 构建预测集合top-K,保证包含正确答案的概率

  2. 不返回单一答案,而是提供一组候选答案

Retriever Set保证检索到相关段落,LLM Set保证生成答案语义正确。

此外还使用了拉丁超立方抽样,提升语义覆盖度,更均衡的探索置信空间。

自我反思RAG:提升检索与生成质量

LLM在生成答案的同时进行自我反思与批判,生成反思/批评标记(tokens),如:is_supported,is_relevant

工作流程:接收用户查询——检索相关文档——生成候选答案——自我反思与评估——输出最终答案。

优势:

  1. 有效排序不同检索结果的候选答案

  2. 部分提升答案的groundedness和上下文一致性

不足:

  1. 难以处理不相关或者误导信息

  2. 在复杂查询表现不佳

本文改进:

  1. 结合话语分析,评估答案与问题的修辞关系

  2. 提升答案的语义grounding和语境适当性

增加知识图谱辅助

。。。

AMR提取句子深层含义

。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值