通过直接删除的方式处理异常值,虽然是最直接方法的方法,但是会减少数据样本,因此在数据集小的情况下,减少数据样本会对结果产生影响;在含有较多异常值的数据集中,大量的删除异常值也会对结果产生影响。因此,当异常值没有可研究性的情况下,应该对这些异常值进行修补处理。修补异常值的方式主要有两种,即改异常值和替换异常值。
通过Kettle工具,替换和修改数据表interpolation_data中的异常值。
现在有一份500人的身高调查数据表interpolation_data,其中包括id、Gender和Height字段,具体数据内容如图所示(注:这里只截取了部分人的数据)。
1.打开Kettle工具,创建转换
通过使用Kettle工具,创建一个转换fill_unusual_value,并添加“表输入”控件、“过滤记录”控件、“空操作(什么也不做)”控件、“设置值为NULL”控件、“合并记录”控件、“替换NULL值”控件、字段选择控件以及Hop跳连接线。
2.配置表输入控件
在SQL框中编写查询数据表interpolation_data的SQL语句,然后单击【预览】按钮,查看数据表interpolation_data的数据是否成功从MySQL数据库中抽取到表输入流中。
3.配置过滤记录控件
在“条件”处设置过滤的条件,即设置Height字段的取值范围([114-226]),从而判断数据表中的每个数据是否为异常值。若是在非异常值的取值范围内,则是非异常值,否则是异常值。在“发送true数据给步骤:”处的下拉框中选择“空操作(什么也不做)2”,将非异常值放在“空操作(什么也不做)2”控件中;在“发送false数据给步骤:”处的下拉框中选择“空操作(什么也不做)”,将异常值放在“空操作(什么也不做)”控件中。
4.配置过滤记录控件
5.配置合并记录控件
在“旧数据源:”处的下拉框选择“设置为NULL值”,“新数据源:”处的下拉框选择“空操作(什么也不做)2”;在“匹配的关键字:”处,添加关键字段,即id。
6.配置替换NULL值控件
勾选“选择字段”处的复选框,并在“字段”框添加字段为Hight,值替换为170(通过计算得到499人的平均身高值近似为170,因此用170替换字段Hight中的NULL值)。
7.配置字段选择控件
8.运行转换
9.查看数据表interpolation_data中的异常值是否修改并替换
单击“字段选择”控件,再单击执行结果窗口的“Preview data”选项卡,查看已修改并替换数据表interpolation_data中的异常值。