对于范数意义的理解

范数是向量和矩阵大小的一种度量。由于向量和矩阵往往都是多维的,无法通过(a,b,c)这种抽象的表达来度量它们的大小,所以引入范数的概念。有了范数的概念,就可以通过范数来研究数值分析的收敛性、稳定性以及误差分析的问题,以收敛性为例,我们要证明一个向量收敛于另一个向量,就可以对这两个向量的差的范数求极限,如果范数趋向于零,那么收敛成立。范数对于向量和矩阵可以类比绝对值对于实数,都是对一种量的大小的度量。

1)向量范数

向量范数的定义有三点:非负性、齐次性和三角不等式。三角不等式可以用三角形两边之和大于第三边来理解。

性质1:两个向量范数差的绝对值小于两个向量差的范数。(三角形两边之差小于第三边)

这个性质可用来证明向量范数的连续性。

性质2:连续性定理:这个定理说的是向量范数对于各个分量都是连续的。

性质3:等价性定理:这个定理相当重要,这个定理证明了一个向量的所有范数不管表达形式怎么样,都是等价的。这个等价的意义是,当这个向量在某个点的范数趋向于零时,这个向量的所有范数都是趋向于零的,对于无穷也是同理。我们只需要研究向量的一个范数,就能得到向量的收敛性、稳定性等性质。

对于矩阵范数,同样也满足等价性定理。

2)矩阵范数

矩阵范数的定义除了向量范数的三条定义外,还有乘法相容性,指的是两个矩阵相乘的范数小于等于两个矩阵的范数相乘。

将矩阵范数和向量范数联系起来的是矩阵范数和向量范数的相容性定理,这个定理说的是一个矩阵乘一个向量的矩阵范数小于等于该矩阵的矩阵范数乘以向量的向量范数,不等号两侧的向量范数要是同类的。

通过上面的相容性定理引出从属范数的定义,将上面定理的不等式变换成一个矩阵范数大于两个向量范数相除的形式,把矩阵范数定义成这个除式的最大值,就得到了向量范数的从属矩阵范数。这个矩阵范数从定义上就是和该向量范数相容的。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值