深度学习(四) 深度学习的基础 感知机 pytorch新手入门及常见问题解决

本文介绍了如何使用PyTorch实现一个包含单隐藏层的多层感知机,重点讲解了ReLU激活函数的应用、权重初始化以及使用Sequential模块构建简洁网络结构。
摘要由CSDN通过智能技术生成

 

多层感知机

ReLu的存在,是为了调节X平方或者高次方前边的系数,组合起来更贴近你想要的那条曲线用的

多层感知机的简洁实现

##多层感知机的从零实现

import torch
from torch import nn
from d2l import torch as d2l

batch =256
train,test = d2l.load_data_fashion_mnist(batch)

#单隐藏层感知机
hide = 256
input = 784
output = 10

w1= nn.Parameter(torch.randn(input,hide,requires_grad=True))
b1 = nn.Parameter(torch.zeros(hide,requires_grad=True))

w2 = nn.Parameter(torch.randn(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值