Matlab 利用遗传算法和粒子群求函数f(x1,x2,x3)的极小值 超详细过程及解析

遗传算法求解

① 确定决策变量和约束条件;

② 建立优化模型;

③ 确定编码方法: 用长度为10位的二进制编码串来分别表示两个决策变量 x1.,x2,x3。10位二进制编码串可以表示从0~1023之间的1024个不同的数,故将 x1,x2,x3的定义域离散化为1023个均等的区域,包括两个端点在内共有1024个不同的离散点。从离散点-5.12 到离散点5.12, 依次让它们分别对应于从 0000000000(O)~1111111111(1023)之间的二进制编码。再将分别表示x1.,x2,x3的三个10位长的二进制编码串连接在一起,组成一个30位长的二进制编码串,它就构成了这个函数优化问题的染色体编码方法。使用这种编码方法,解空间和遗传算法的搜索空间就具有一一对应的关系。例如 ,  x:0000110111 11011100011001100011就表示一个个体的基因型,其中前10位表示x1.,中间10位表示x2,后10位表示x3。

④ 确定解码方法:解码时需要将30位长的二进制编码串切断为三个10位长的二进制编

码串,然后分别将它们转换为对应的十进制整数代码,分别记为y1.,y2,y3。.依据个体编码方法和对定义域的离散化方法可知,将代码yi转换为实数变量xi的解码公式为

⑤ 确定个体评价方法:由于函数的值域总是非负的,并且优化目标是求函数的最大值,故可将个体的适应度直接取为对应的函数值,即:

⑥ 设计遗传算子:选择运算使用比例选择算子,交叉运算使用单点交叉算子,变异运算使用基本位变异算子。

⑦ 确定遗传算法的运行参数:群体大小M=80,终止进

### 使用MATLAB中的遗传算法求解多变量函数的最大值 为了在MATLAB中使用遗传算法求解多变量函数 \( f(x_1, x_2, x_3, x_4) = \frac{1}{x_1^2 + x_2^2 + x_3^2 + x_4^2 + 1} \) 的最大值,可以按照以下方式编写代码。此过程涉及定义目标函数、设置遗传算法参数以及调用 `ga` 函数来执行优化。 #### 定义目标函数 首先,在MATLAB工作区创建一个新的脚本文件并定义待优化的目标函数: ```matlab function y = objectiveFunction(x) % 输入向量x包含四个决策变量[x1; x2; x3; x4] y = 1 ./ (sum(x.^2) + 1); end ``` #### 设置遗传算法选项 接着配置遗传算法的相关参数,包括种群大小、迭代次数、交叉率变异率等超参数设定[^1]: ```matlab options = optimoptions('ga', ... 'PopulationSize', 100,... % 种群规模设为100 'MaxGenerations', 30,... % 进化次数设为30次 'CrossoverFraction', 0.6,... % 交叉概率设为0.6 'MutationFcn', @mutationuniform,...% 变异操作采用均匀分布 'Display', 'iter'); % 显示每一代的信息 ``` #### 执行遗传算法 最后利用上述准备好的信息启动遗传算法搜索全局最优点,并记录下最终找到的最佳适应度及其对应的输入组合: ```matlab lb = [-5,-5,-5,-5]; ub = [5,5,5,5]; rng default % For reproducibility [x_optimal, fval] = ga(@objectiveFunction, 4, [], [], [], [], lb, ub, [], options); disp(['Optimized variables are: ', num2str(x_optimal)]); disp(['Maximum value of the function is:', num2str(fval)]); ``` 通过以上步骤可以在限定范围内寻找使给定四元二次分式形式的目标函数取得极大化的那组实数值作为解集输出显示出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值