什么是数字图像处理
数字图像处理是指借助于数 计算机来处理数字图像。
当x,y和灰度值f是有限的离散数值时,称该图像为数字图像
一幅图像可定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,而在任一对空间坐标 (x,y) 处的幅值f称为图像在该点处的强度或灰度
图像处理涉及的范畴或相关领域的界定
1.仅是人为界定和限制
2.计算机视觉用计算机去模拟人类视觉,包括理解和推理并根据世界输入采用行动等
3.图像分析(也称为图像理解)领域则处在图像处理和计算机视觉两个学科之间
从图像处理到计算机视觉分级
1.低级处理及初始操作,如降低噪声的图像预处理,对比度增强和图像尖锐化。低级处理是一输入和输出都是图像为特点的处理。
2.中级处理涉及分割(把图像分为不同区域或目标物)以及缩减对目标的描述,以使其更适合计算机处理对不同目标的分割(识别)。中级图像处理是一输入为图像,但是输出是从这些图像中提取的特征(如边缘、轮廓及不同物体的标识等)为特点。
3.高级处理涉及图像分析中被识别物体的总体理解,以及执行与视觉相关的识别函数等
视觉感知要素
由于人的直觉与分析会影响技术选择,因此了解人类的视觉感知是很有必要的。此外,这也有助于了解人类视觉的物理限制。
人眼结构
晶状体—透镜
视网膜—成像屏
盲点—没有感光器的位置
人眼成像
由晶状体控制成像位置,在此不再赘述
视网膜上的光接收器相应刺激作用产生感觉,感觉把辐射能转变为电脉冲,最后由大脑解码颠倒成像
亮度感知
能适应的范围宽,同时鉴别的范围小
人的视觉绝对不能同时在一个范围内工作,确切地说,它是利用改变其整个灵敏度来完成这一大变动的,这就是所谓的亮度适应现象。与整个适应范围相比,能同时鉴别的光强度级的总范围很小
亮度不是简单的强度函数,对比会有很强的影响
视觉错觉会因为未知原因产生
电磁波谱可用波长、频率、能量表示
如何描述光源
辐射强度是从光源流出能量的总量,通常用瓦特(W)度量
光通量给出观察者从光源感受到的能量,用流明数度量
亮度是光感受的主观描绘,实际上不能测量,是描述彩色感觉的参数之一
灰度级用来描述单色光图像的亮度,因为它的范围从黑到灰,最后到白
观测一个物体的电磁波的波长必须小于物体尺寸
图像感知与获取
图像由“照射”源和形成图像的“场景”元素对光能的反射或吸收相结合而产生。
当一幅图像从物理过程产生时,它的值正比于物理源的辐射能量。
因此,f(x, y)一定是非零和有限的,即:0 < f(x, y) < ∞
函数f(x, y)可由两个分量来表征:
(1)入射到观察场景的光源总量,即入射分量i(x, y);
(2)场景中物体反射光的总量,即反射分量r(x, y);
两个函数合并后形成f(x, y):
f(x, y) = i(x, y) r(x, y)
0 < i(x, y) < ∞, 0 < r(x, y) < 1
注:i(x, y)在物理意义上表示一个圆,r(x, y)在物理意义上也不会出现完全的反射,故限制在0(全吸收)和1(全反射)之间。
传感器
原理:将输入电功率和特殊类型检测能源敏感的传感器材料组合,把输入能源转变为电压。输出电压波形是传感器的响应,最后,数字化每个传感器的响应得到一个数字量
分类:
点成像传感器
线阵传感器
面阵传感器
成像模型
用二维函数f(x,y)表示,物理意义由图像源决定,亮度正比于物理源辐射的能量。范围为0~∞
图像取样与量化
取样:对坐标进行数字化,即每多少步取值一次
量化:对幅值数字化,即测定强度
数字图像可用矩阵表示,矩阵中的每个元素称之为像素
数字化过程对M和N除了必须取整数外没有其他要求。然而出于处理、存储和取样的硬件考虑,灰度值典型的取值是2的整数次幂。
对于一副大小为M * N,灰度级L = 2^k的数字图像,所需存储空间为b = M * N * k。
即每个像素的灰度级为2^k,则有k比特空间,共M * N个像素点
空间与灰度分辨率
空间分辨率的度盘必须针对空间单位来规定才有意义。图像本身并不 会告诉我们全部内容。如果没有规定图像包含的空间维数,那么我们说幅图像的分辨率为 1024*1024 像索是没有意义的。尺寸本身只是在图像容量问做比较时才有帮助。
灰度分辨率是指在灰度级中最小的灰度变化。
图像内插
放大,收缩,旋转图片时对原本没有的像素进行填充
方法:
1.最邻近内插法
2.双线性内插法(根据4个最近像素去估计给定点像素)
3.双三次内插
像素间基本关系
相邻像素:4邻域:N4(p),8邻域:N8(p)
邻接,连通,区域,边界
邻接:4邻接,8邻接,m邻接(混合邻接)
连通:可参考数据结构中图的连通的定义
区域:连通集
边界:与连通集的补集邻近的点的集合