堆排序

1. 堆的基本概念

1. 堆分为大根堆、小根堆,逻辑上是一棵完全二叉树

2. 大根堆:对于树中任意一个结点n,n大于它的左孩子、右孩子,根结点最大

3. 小根堆:对于树中任意一个结点n,n小于它的左孩子、右孩子,根结点最小

4. 使用大根堆排序得到递增序列,使用小根堆排序得到递减序列

2. 堆排序的大致过程

1. 将待排序序列建立成大根堆

2. 将第一个也就是最大的元素与最后一个元素交换

3. 对于交换后的第一个元素,重新调整为大根堆

4. 重复2、3,一共n-1次

3. 关键所在

调整为大根堆是关键,下面是代码

//将以k为根的子树调整为大根堆
void headAdjust(int A[], int k, int len) {
	A[0] = A[k];							//A[0]暂存子树根结点
	for (int i = 2 * k; i <= len; i *= 2) { //2k是k的左孩子,沿key较大的子结点向下筛选
		if (i < len && A[i] < A[i + 1]) {	//i+1是k的右孩子
			i++;							//若右孩子大则令i=i+1
		}
		//此时A[i]为k的左右孩子中大的那个
		if (A[0] >= A[i]) {					//若k大于等于它左右孩子最大的那个
			break;							//直接退出,不用调整
		}
		else {								//若k小于它左右孩子最大的那个
			A[k] = A[i];					//将k最大的孩子赋给k
			k = i;							//此时相当于k下坠到i的位置
		}
	}
	A[k] = A[0];							//调整完毕
}

4. 完整代码案例

#include<iostream>
using namespace std;
//交换a,b的值
void swap(int& a, int& b) {
	int temp = a;
	a = b;
	b = temp;
}
//将以k为根的子树调整为大根堆
void headAdjust(int A[], int k, int len) {
	A[0] = A[k];							//A[0]暂存子树根结点
	for (int i = 2 * k; i <= len; i *= 2) { //2k是k的左孩子,沿key较大的子结点向下筛选
		if (i < len && A[i] < A[i + 1]) {	//i+1是k的右孩子
			i++;							//若右孩子大则令i=i+1
		}
		//此时A[i]为k的左右孩子中大的那个
		if (A[0] >= A[i]) {					//若k大于等于它左右孩子最大的那个
			break;							//直接退出,不用调整
		}
		else {								//若k小于它左右孩子最大的那个
			A[k] = A[i];					//将k最大的孩子赋给k
			k = i;							//此时相当于k下坠到i的位置
		}
	}
	A[k] = A[0];							//调整完毕
}
//建立大根堆
void buildMaxHeap(int A[], int len) {
	for (int i = len / 2; i > 0; i--) {
		headAdjust(A, i, len);
	}
}
//堆排序
void heapSort(int A[], int len) {
	buildMaxHeap(A, len);			//建立大根堆
	for (int i = len; i > 1; i--) {	//一共n-1趟交换
		swap(A[i], A[1]);			//堆顶和堆底交换
		headAdjust(A, 1, i - 1);	//调整,把剩余的i-1个元素调整为大根堆
	}
}

int main() {
	int arr[] = { 0,1,4,5,2,6,3 };
	heapSort(arr, 6);
	for (int i = 1; i <= 6; i++) {
		cout << arr[i] << " ";
	}
	return 0;
}

5. 运行结果

6. 时间复杂度

最好最坏平均都是O(nlogn)

7. 空间复杂度

O(1)

8. 稳定性

不稳定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想学习啊啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值