基于lbp和svm的动作识别算法

该博客详细介绍了如何运用局部二值模式(LBP)和支持向量机(SVM)进行动作识别。首先,文章阐述了如何提取LBP特征,接着讨论了图像预处理步骤,然后展示了SVM进行分类识别的具体结果,最后总结了整个识别系统的准确率。
摘要由CSDN通过智能技术生成

本程序实现了基于lbp和svm的动作识别算法

 可以得到lbp的特征

图像的预处理操作

 SVm的分类识别结果

 SVM的总体的识别准确率

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能专属驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值