上一篇文章:OpenCV计算机视觉 02 图片修改 图像运算 边缘填充 阈值处理
目录
添加椒盐噪声
def add_peppersalt_noise(image, n=10000):
result = image.copy()
h, w = image.shape[:2] # 获取图片的高和宽
for i in range(n): # 生成n个椒盐噪声
x = np.random.randint(1, h)
y= np.random.randint(1, w)
if np.random.randint(0, 2) == 0:
result[x, y] = 0
else:
result[x,y] = 255
return result
image = cv2.imread('tu.png')
cv2.imshow('original',image)
cv2.waitKey(0)
noise = add_peppersalt_noise(image)
cv2.imwrite(r'noise.png',noise)#保存一下,等会我们做平滑操作
cv2.imshow('noise',noise)
cv2.waitKey(0)
图像平滑常见处理方式
图像平滑(smoothing)也称为“模糊处理”(bluring), 是一项简单且使用频率很高的图像处理方法。图像平滑处理可以用来压制、弱化或消除图像中的细节、突变、边缘和噪声。但最常见的是用来减少图像上的噪声或者失真。降低图像分辨率时,平滑处理是很重要的。下面是常用的一些滤波器
-
均值滤波(邻域平均滤波&