OpenCV计算机视觉 03 椒盐噪声的添加与常见的平滑处理方式(均值、方框、高斯、中值)

上一篇文章:OpenCV计算机视觉 02 图片修改 图像运算 边缘填充 阈值处理

目录

添加椒盐噪声

图像平滑常见处理方式

均值滤波 (blur)

方框滤波 (boxFilter)

高斯滤波 (GaussianBlur)

中值滤波 (medianBlur)


添加椒盐噪声

def add_peppersalt_noise(image, n=10000):
    result = image.copy()
    h, w = image.shape[:2]    # 获取图片的高和宽
    for i in range(n):    # 生成n个椒盐噪声
        x = np.random.randint(1, h)
        y=  np.random.randint(1, w)
        if np.random.randint(0, 2) == 0:
            result[x, y] = 0
        else:
            result[x,y] = 255
    return result
​
image = cv2.imread('tu.png')
cv2.imshow('original',image)
cv2.waitKey(0)
noise = add_peppersalt_noise(image)
cv2.imwrite(r'noise.png',noise)#保存一下,等会我们做平滑操作
cv2.imshow('noise',noise)
cv2.waitKey(0)

图像平滑常见处理方式

图像平滑(smoothing)也称为“模糊处理”(bluring), 是一项简单且使用频率很高的图像处理方法。图像平滑处理可以用来压制、弱化或消除图像中的细节、突变、边缘和噪声。但最常见的是用来减少图像上的噪声或者失真。降低图像分辨率时,平滑处理是很重要的。下面是常用的一些滤波器

  • 均值滤波(邻域平均滤波&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值