pandas query()函数

query()函数允许用户通过字符串表达式筛选DataFrame的行,如`df.query(Age>=30)`,支持逻辑运算符和字符串函数。此功能适用于数据过滤和分析。
摘要由CSDN通过智能技术生成

在pandas中,`query()`函数用于从DataFrame中筛选出满足指定条件的行。它接受一个字符串作为参数,该字符串表示查询条件。下面是`query()`函数的使用方法和示例:使用方法:

DataFrame.query(expr, inplace=False, **kwargs)

参数说明:
- `expr`:表示查询条件的字符串表达式。
- `inplace`:一个布尔值,表示是否在原始DataFrame上进行就地修改,默认为False。
- `**kwargs`:其他可选参数,用于传递给查询表达式中使用的变量。

示例: 


import pandas as pd

# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [25, 30, 35, 40],
        'Salary': [50000, 60000, 70000, 80000]}
df = pd.DataFrame(data)

# 使用query()函数筛选出Age大于等于30的行
result = df.query('Age >= 30')
print(result)
```

输出结果:
```
      Name  Age  Salary
1      Bob   30   60000
2  Charlie   35   70000
3    David   40   80000
```

注意:

在查询表达式中,可以使用列名来引用DataFrame中的列,也可以使用Python的运算符和函数来构建复杂的查询条件。例如,可以使用`and`、`or`、`not`等逻辑运算符,也可以使用`==`、`!=`、`>`、`<`等比较运算符,以及`isin()`、`startswith()`等字符串函数。

需要注意的是,查询表达式中的字符串要用单引号或双引号括起来,以表示字符串字面值。

总而言之,`query()`函数提供了一种方便且灵活的方式来筛选和过滤DataFrame中的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小辉懂编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值