Windows10+cuda11.8安装pytorch

注意要先安装好cuda和cudnn,并建立虚拟环境

1.进入conda虚拟环境

2.输入下面的指令

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118

或者进入链接下载https://download.pytorch.org/whl/torch_stable.html

(注释:cu118表示cuda11.8,cp39表示python3.9,)

下载完成后,进入conda虚拟环境,切换到下载的文件夹

pip install 文件名

安装完成

本文参考文章http://t.csdnimg.cn/wbAxS


 

### 如何找到兼容 CUDA 11.8PyTorch 安装镜像源 对于寻找适用于特定 CUDA 版本的 PyTorch 安装镜像源,官方提供了详细的指导文档[^2]。当 NVIDIA-SMI 显示版本为 12.5 并不表示仅限于安装此版本的 CUDA;实际上支持向下兼容至更低版本如 11.8 或更早版本。 为了确保所使用的 PyTorch 能够与已有的 CUDA 11.8 正常协作,在选择 PyTorch 安装包时需特别注意其依赖关系。通常推荐通过 Anaconda 来管理环境并安装合适的 PyTorch 版本,因为这种方式能够简化依赖项处理过程,并减少潜在冲突的可能性。 具体操作如下: #### 使用 Conda 安装指定 CUDA 版本的 PyTorch 可以通过 conda 命令来获取匹配 CUDA 11.8PyTorch 发行版: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch ``` 这条命令会自动解析并安装适合当前系统的 PyTorch 及其相关组件,同时确保它们都基于相同的 CUDA 工具链 (即 v11.8)[^3]。 另外,如果偏好 pip 方式,则可以从 PyPI 获取预编译好的二进制文件,但需要注意的是并非所有组合都有现成构建提供给 pip 用户。此时建议访问 [PyTorch官方网站](https://pytorch.org/get-started/locally/) 查看最新的安装指南以及可用选项列表。 #### 验证安装成功与否 完成上述步骤之后,可通过 Python 解释器内运行 `import torch` 和 `print(torch.cuda.is_available())` 来验证是否正确加载了带有 GPU 支持的 PyTorch 库。若返回 True 则说明一切正常工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值