Windows10+cuda11.8安装pytorch

注意要先安装好cuda和cudnn,并建立虚拟环境

1.进入conda虚拟环境

2.输入下面的指令

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118

或者进入链接下载https://download.pytorch.org/whl/torch_stable.html

(注释:cu118表示cuda11.8,cp39表示python3.9,)

下载完成后,进入conda虚拟环境,切换到下载的文件夹

pip install 文件名

安装完成

本文参考文章http://t.csdnimg.cn/wbAxS


 

安装CUDA 11.8PyTorch 1.9.1通常涉及以下几个步骤: 1. **检查兼容性**: 确保你的系统支持CUDA 11.8,并且确认你的显卡型号在官方支持列表中。访问CUDA官网 (<https://developer.nvidia.com/cuda-downloads>) 查看对应版本的详细信息。 2. **下载CUDA Toolkit**: 下载 CUDA 11.8安装包,一般可以从 NVIDIA Developer Zone 获取。选择适合你操作系统的版本(如Windows、Linux或macOS),并按照提示下载。 3. **安装CUDA**: 运行安装程序,遵循安装向导完成安装。注意,在安装过程中要选择“仅安装CUDA”选项,避免安装驱动程序或GPU计算软件栈。 4. **更新PATH环境变量**: 完成安装后,需要更新系统路径以指向CUDA的bin目录,这通常是在`<CUDA_ROOT>/bin`。添加这个路径到系统的PATH环境变量中,以便命令行工具可以找到它。 5. **安装cuDNN**: 对于深度学习而言,cuDNN是PyTorch的重要依赖。从NVIDIA官网下载cuDNN并与CUDA版本相匹配,然后按照文档指示安装。 6. **安装PyTorch**: 使用pip安装PyTorch 1.9.1,指定CUDA和cuDNN版本: ``` pip install torch torchvision -f https://download.pytorch.org/whl/cu118/torch_stable.html ``` 或者如果需要CPU版本,替换为 `torch+ torchvision` 7. **验证安装**: 安装完成后,你可以通过Python测试安装是否成功,例如运行以下代码: ```python import torch print(torch.cuda.is_available(), torch.cuda.current_device()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值