Visual Transformers(视觉变换器)是将 Transformer 架构应用于计算机视觉任务的一种方法。Transformer 最初是为自然语言处理(NLP)任务设计的,但由于其在序列建模和捕捉长距离依赖方面的优越性能,研究人员将其引入到计算机视觉领域,产生了视觉变换器这一新兴概念。
1. Transformer 的基本原理
Transformer 是一种基于自注意力机制(Self-Attention)的架构,最初用于机器翻译任务。其核心组件包括:
- 自注意力机制:使得模型能够根据输入序列中的其他元素来调整每个元素的表示,这样可以有效捕捉输入序列中元素间的长距离依赖关系。
- 前馈神经网络:在每一层 Transformer 中,除了自注意力机制外,还包含了一个前馈神经网络用于进一步映射信息。
- 位置编码:由于 Transformer 不具备像卷积神经网络(CNN)那样的空间或时间感知能力,因此通过引入位置编码来保持序列中元素的顺序信息。
2. Visual Transformer 的出现与背景
在计算机视觉中,传统的方法(如卷积神经网络,CNN)通过局部感受野、卷积操作和池化层来逐步提取图像的特征。这些操作有效捕捉局部信息,但对长距离依赖和全局上下文建模能力有限。
而 Transformer 在 NLP 中通过全局自注意力机制能够高效地捕捉长距离依赖,因此在图像中也能通过全局建模来更好地理解图像的细节和全局结构。Visual Transformer 将这种思想引入图像处理任务,展示了与传统 CNN 方法不同的潜力。
3. Visual Transformer 的工作原理
视觉变换器的核心思想是将输入的图像切分成多个图像块(patches),然后将每个图像块视为一个"词"(类似于 NLP 中的单词),输入到 Transformer 网络进行处理。具体来说,视觉变换器通常包含以下几个步骤:
3.1 图像块切分(Patch Embedding)
视觉变换器首先将输入的图像划分为小的图像块(patches),每个图像块的大小通常为 16×16 或 32×32 像素。每个图像块都被展平(flatten)并通过一个线性映射(即 线性嵌入)转换成一个高维向量,类似于词嵌入(word embedding)在 NLP 中的作用。这个嵌入向量作为 Transformer 的输入。
3.2 位置编码
由于 Transformer 自身没有任何的局部结构信息(例如 CNN 中的卷积操作自带局部感受野),因此需要引入 位置编码 来告诉模型每个图像块的位置。通常,位置编码是通过固定的或者学习得到的方式加入到图像块的嵌入中。
3.3 自注意力机制(Self-Attention)
在输入图像块的嵌入和位置编码的基础上,Transformer 模型使用自注意力机制来捕捉不同图像块之间的关系和依赖。每个图像块的表示都会根据图像中其他块的内容调整自己的表示。自注意力机制计算每个图像块对其他图像块的影响权重,从而能够全局建模图像的上下文信息。
3.4 多层 Transformer 编码器
视觉变换器通常使用多层的 Transformer 编码器进行信息的传递和处理。每一层的 Transformer 编码器由自注意力层和前馈神经网络组成。多层堆叠的结构使得视觉变换器能够捕捉更加复杂的全局上下文信息。
3.5 输出层
视觉变换器的输出通常是经过自注意力机制和前馈网络处理后的图像块的表示。这些输出可以用来进行各种下游任务,例如图像分类、目标检测、图像生成等。
4. 视觉变换器的主要变体
随着视觉变换器的提出,多个变体和改进被提出以提高其性能和计算效率。以下是一些典型的视觉变换器变体:
4.1 ViT (Vision Transformer)
ViT 是最早的视觉变换器之一,提出了将图像划分为固定大小的图像块并将其输入 Transformer 模型的想法。在 ViT 中,图像首先被切分成多个 16×16 的图像块,每个图像块都通过线性嵌入转换成向量,然后通过 Transformer 编码器进行处理。ViT 需要大量的数据和计算资源才能训练出良好的模型,但在大规模数据集(如 ImageNet)上表现出了强大的性能。
4.2 DeiT (Data-efficient Image Transformer)
ViT 的一个限制是它在小数据集上可能表现较差,因为它需要大量的图像数据来训练。因此,DeiT(Data-efficient Image Transformer)提出了通过知识蒸馏(knowledge distillation)来增强模型的效率。DeiT 使用一个小的 CNN 模型作为教师网络,帮助指导视觉变换器的训练,从而在较少数据的情况下也能取得很好的效果。
4.3 Swin Transformer (Shifted Window Transformer)
Swin Transformer 是一种改进的视觉变换器,它通过引入局部窗口机制(shifted window mechanism)来解决全局自注意力计算的计算成本问题。Swin Transformer 将图像分割成多个不重叠的窗口,并对每个窗口内的图像块进行自注意力计算。通过在不同层次之间移动窗口的位置,Swin Transformer 能够捕捉到更丰富的上下文信息,同时显著减少计算成本。
4.4 PVT (Pyramid Vision Transformer)
PVT 是另一种针对视觉任务优化的变换器,它通过引入金字塔结构来逐渐减小特征图的分辨率,从而在不同的尺度上捕捉图像信息。PVT 使得视觉变换器在计算效率上得到提高,并且可以处理更大的输入图像。
5. 视觉变换器的优势与挑战
5.1 优势
- 全局建模能力:相比 CNN,Transformer 能够处理全局上下文信息,对于图像中的远距离依赖关系建模更为有效。
- 灵活性和可扩展性:Transformer 架构具有较强的灵活性,可以适应不同的任务(如分类、分割、检测等)并且容易扩展。
- 数据驱动:Transformer 架构的成功通常依赖于大规模数据的训练,这使得它在大数据集上能够学习到更强的特征表示。
5.2 挑战
- 计算开销大:Transformer 的自注意力机制需要计算所有图像块之间的关系,因此对于大图像和较高分辨率的输入,计算复杂度非常高。
- 数据需求大:Transformer 模型通常需要大量的标注数据才能达到较好的性能,尤其是在视觉任务中,训练数据集的规模和质量对模型性能的影响非常大。
- 训练不稳定:在小数据集上训练 Transformer 模型时,可能会面临过拟合或训练不稳定的问题。
6. 总结
Visual Transformers 在计算机视觉任务中取得了显著的进展。通过引入 Transformer 架构,视觉变换器能够有效地建模图像中的全局上下文信息,并且在一些视觉任务上超越了传统的卷积神经网络(CNN)方法。尽管视觉变换器在计算开销和数据需求上存在挑战,但随着技术的不断发展,许多变体(如 DeiT、Swin Transformer 和 PVT)已经显著提高了其效率和性能。视觉变换器不仅是计算机视觉领域的重要研究方向,还为多模态学习和跨模态任务提供了新的方法。