行列式及其性质
行列式是一个与方阵相关的标量值,反映了矩阵的一些重要属性,如是否可逆、线性变换的伸缩因子等。在 线性代数 中,行列式是研究方阵性质的重要工具。我们将在下文中介绍行列式的定义、计算方法以及一些重要的性质。
1. 行列式的定义
对于一个 n×n 的方阵 A = [a₁₁, a₁₂, …, a₁ₙ; a₂₁, a₂₂, …, a₂ₙ; … ; aₙ₁, aₙ₂, …, aₙₙ],它的行列式记作 det(A) 或 |A|,其定义是基于排列符号和元素的代数余子式。
1.1 二阶行列式
对于一个 2×2 方阵:
A = ( a b c d ) A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A=(acbd)
它的行列式为:
det ( A ) = a d − b c \text{det}(A) = ad - bc det(A)=ad−bc
1.2 三阶行列式
对于一个 3×3 方阵:
A = ( a b c d e f g h i ) A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} A= adgbehcfi
它的行列式可以通过展开第一行来计算:
det ( A ) = a ( e i − f h ) − b ( d i − f g ) + c ( d h − e g ) \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) det(A)=a(ei−fh)−b(di−fg)+c(dh−eg)
1.3 一般 n×n 方阵的行列式
对于更大的方阵,行列式的计算可以通过递归展开来进行,即通过对任意一行或一列进行展开,利用余子式进行计算。具体来说,对于任意的 n×n 方阵 A = [aᵢⱼ],行列式可以通过以下公式计算:
det ( A ) = ∑ i = 1 n ( − 1 ) i + j a i j det ( A i j ) \text{det}(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \text{det}(A_{ij}) det(A)=i=1∑n(−1)i+jaijdet(Aij)
其中,aᵢⱼ 是 A 中的元素,Aᵢⱼ 是通过删除第 i 行和第 j 列得到的 (n-1)×(n-1) 的子矩阵。
2. 行列式的性质
行列式具有一些非常重要的性质,帮助我们理解矩阵的基本属性。
2.1 行列式与矩阵可逆性
- 如果矩阵 A 的行列式不为零(即 det(A) ≠ 0),则矩阵 A 可逆。
- 如果矩阵 A 的行列式为零(即 det(A) = 0),则矩阵 A 不可逆,称为奇异矩阵。
2.2 行列式与矩阵的转置
矩阵的转置与其行列式的关系非常简单:
det ( A T ) = det ( A ) \text{det}(A^T) = \text{det}(A) det(AT)=det(A)
这意味着,矩阵的行列式在转置后不发生变化。
2.3 行列式与矩阵的乘法
行列式有一个重要的乘法性质,即:
det ( A B ) = det ( A ) ⋅ det ( B ) \text{det}(AB) = \text{det}(A) \cdot \text{det}(B) det(AB)=det(A)⋅det(B)
这意味着两个矩阵的乘积的行列式等于各自行列式的乘积。
2.4 行列式与矩阵的标量乘法
如果一个矩阵的每个元素都被一个常数 k 乘以,那么行列式会发生相应的变化。具体来说,如果矩阵 A 是 n×n 的矩阵,则:
det ( k A ) = k n ⋅ det ( A ) \text{det}(kA) = k^n \cdot \text{det}(A) det(kA)=kn⋅det(A)
即,矩阵的每一行都乘以 k,行列式就会乘以 k 的 n 次方。
2.5 行列式与交换行或列
如果矩阵 A 的两行或两列互换,那么其行列式的符号会改变:
det ( A ′ ) = − det ( A ) \text{det}(A') = -\text{det}(A) det(A′)=−det(A)
其中,A’ 是通过交换 A 中两行或两列得到的矩阵。
2.6 行列式与线性相关性
如果矩阵 A 的两行或两列线性相关(即其中一行或一列可以表示为其它行或列的线性组合),那么其行列式为零:
det ( A ) = 0 \text{det}(A) = 0 det(A)=0
这一性质反映了矩阵的行或列之间的线性独立性。如果行列式为零,说明矩阵的行或列是线性相关的。
2.7 行列式与行列变换
-
矩阵的行(列)加倍:如果矩阵的某一行(列)加上了另一行(列)的倍数,行列式保持不变:
det ( A ) = det ( A ′ ) \text{det}(A) = \text{det}(A') det(A)=det(A′) -
矩阵的某一行(列)乘以常数:如果矩阵的某一行(列)乘以常数 k,那么行列式会被乘以 k:
det ( A ) = k ⋅ det ( A ′ ) \text{det}(A) = k \cdot \text{det}(A') det(A)=k⋅det(A′)
2.8 行列式的对称性
- 对于 对称矩阵,即 A = A^T,其行列式通常用于描述矩阵的特征值。
- 对于 反对称矩阵(即 A = -A^T),如果矩阵的阶数是奇数,则其行列式为零。
2.9 行列式的几何意义
行列式还具有几何解释:它表示了由矩阵的列向量张成的平行多面体的体积。如果矩阵是 n×n 的方阵,那么行列式的绝对值表示由矩阵列向量所生成的 n 维平行多面体的体积。如果行列式为零,说明这些列向量在 n 维空间中是线性相关的,生成的并不是一个 n 维体积(即平行多面体的体积为零)。
3. 行列式计算的常用方法
3.1 递归展开(拉普拉斯展开)
对于 n×n 矩阵,行列式可以通过递归地展开来计算。选择任意一行或一列进行展开,然后计算每个元素对应的代数余子式。这个过程直到得到一个 2×2 的行列式为止,最终可以递归计算出整个矩阵的行列式。
3.2 利用三角矩阵
如果矩阵是上三角矩阵或下三角矩阵,则其行列式等于对角线元素的乘积。这可以极大地简化行列式的计算。
3.3 利用初等行变换
通过行变换将矩阵化为上三角矩阵,行列式的值会随着行变换而变化。通过这样的简化,可以直接得到行列式的值。
4. 总结
- 行列式是与方阵相关的标量,反映了矩阵的可逆性、特征值等属性。
- 性质:
- 行列式与矩阵的可逆性密切相关。
- 行列式在矩阵转置、乘法、标量乘法等操作中有简单的变换规律。
- 行列式的值与矩阵的行列线性独立性、几何性质相关。
- 计算:
- 通过递归展开、三角矩阵法等方法来计算行列式。
行列式是线性代数中的重要工具,广泛应用于方程组的解、特征值问题、几何计算等领域。