行列式

二阶、三阶行列式的性质

行列式若有两列相同,则行列式的值为0

二阶行列式的性质

  1. 行列互换,二阶行列式值不变,即:

    a11a21a12a22=a11a12a21a22=a11×a22a12×a21 a 11 a 12 a 21 a 22 = a 11 a 21 a 12 a 22 = a 11 × a 22 − a 12 × a 21

    在二阶行列式中,行与列的地位相同。即二阶行列式对行成立的结论,对列也同样成立。

  2. 若二阶行列式中某行(列),每个元素分成两个数之和,则该行列式可关于该行(列)拆开成两个行列式之和,拆开时其他行(列)保持不变。即:

    a11+b11a21a12+b12a22=a11a12a21a22+b11a21b12a22 a 11 + b 11 a 12 + b 12 a 21 a 22 = a 11 a 21 a 12 a 22 + b 11 b 12 a 21 a 22

  3. 两行(列)互换,行列式的值改变正负性。即:

    a11a21a12a22=a21a11a22a12 a 11 a 12 a 21 a 22 = − a 21 a 22 a 11 a 12

  4. 二阶行列式中某行(列)有公因子k时,k可以提取到行列式外。即:

    k×a11a21k×a12a22=k×a11a21a12a22 k × a 11 k × a 12 a 21 a 22 = k × a 11 a 12 a 21 a 22

  5. 二阶行列式中某一行(列)加上另一行(列)的k倍时,其值不变。即:
    k×a21+a11a21k×a22+a12a22=a11a21a12a22 k × a 21 + a 11 k × a 22 + a 12 a 21 a 22 = a 11 a 12 a 21 a 22

三阶行列式的展开式和性质

三阶行列式展开式

这里写图片描述

余子式

ij2aijMijM11=a22a32a23a33M12=a21a31a23a33M13=a21a31a22a32 在 三 阶 行 列 式 中 , 划 去 第 i 行 第 j 列 后 所 剩 下 的 2 阶 行 列 式 称 为 元 素 a i j 的 余 子 式 , 记 为 M i j , 即 : M 11 = a 22 a 23 a 32 a 33 , M 12 = a 21 a 23 a 31 a 33 , M 13 = a 21 a 22 a 31 a 32

代数余子式

Aij=(1)i+jMijaijA11=M11A12=M12A13=M13 再 令 : A i j = ( − 1 ) i + j M i j 称 之 为 元 素 a i j 的 代 数 余 子 式 , 例 如 : A 11 = M 11 , A 12 = − M 12 , A 13 = M 13

性质

  1. 行列互换,三阶行列式的值不变。
  2. 若二阶行列式中某行(列),每个元素分成两个数之和,则该行列式可关于该行(列)拆开成两个行列式之和,拆开时其他行(列)保持不变。
  3. 两行(列)互换,三阶行列式的值改变正负性。
  4. 二阶行列式中某行(列)有公因子k时,k可以提取到行列式外。
  5. 二阶行列式中某一行(列)加上另一行(列)的k倍时,其值不变。

n元排列

n元排列的逆序及逆序数

  1. 由1,2,…,n组成的有序数组称为一个n元排列,记为 j1,j2,...,jn j 1 , j 2 , . . . , j n 。全体n元排列组成的集合记为 Pn P n
  2. 在一个n元排列 j1,j2,...,jn j 1 , j 2 , . . . , j n 中,如果一个大数排在小数前面,即当 s<t s < t 时,有 js>jt j s > j t ,则称这一对数 jsjt j s j t 构成一个逆序,此排列的逆序总数称为它的逆序数,记为 τ(j1,j2,...,jn) τ ( j 1 , j 2 , . . . , j n ) 。如: τ(12...n)=0 τ ( 12... n ) = 0 τ(n(n1)...21)=(n1)+(n2)+...+1=n2(n1) τ ( n ( n − 1 ) . . .21 ) = ( n − 1 ) + ( n − 2 ) + . . . + 1 = n 2 ( n − 1 )

n元排列的奇偶性

  1. 逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列
  2. 对于n阶行列式,列下标的排列是偶排列的代数余子式的符号是正,否则为负

对换及其对排列奇偶性的影响

  1. 在一个排列中把两个数i与j互换位置,这样的操作称为对换,记为(i,j)。对换之后奇偶性改变。
  2. 全部 n(n2) n ( n ≥ 2 ) 元 排 列 中 奇 偶 排 列 各 占 一 半
  3. 奇(偶)排列经奇(偶)次排列后可化为自然排列

n阶行列式的定义

对角线法则对4阶及以上行列式不适用

a11a21···an1a12a22an2·········a1na2nann=j1j2···jnPn(1)τ(j1j2···jn)a1j1a2j2···anjn a 11 a 12 · · · a 1 n a 21 a 22 · · · a 2 n · · · a n 1 a n 2 · · · a n n = ∑ j 1 j 2 · · · j n ∈ P n ( − 1 ) τ ( j 1 j 2 · · · j n ) a 1 j 1 a 2 j 2 · · · a n j n

1. n!项代数和;
2. 每项为选自不同行、不同列的n个元素之积;
3. 每项符号:行下标按自然排列排好后,列下标排列的奇偶性决定符号正负;
4. 可视为对方阵 A=(aij)n×n A = ( a i j ) n × n 的一种运算,也记作 det(A)|A| d e t ( A ) 或 | A |

用定义计算行列式

先转换为三角形矩阵,再计算
对角行列式、上(下)三角行列式均等于其对角线元素的乘积,即均等于 a11a22···ann=ni=1aii a 11 a 22 · · · a n n = ∏ i = 1 n a i i


行列式的性质

转置行列式

将行列式中的行列互换,所得新的行列式称为转置行列式,记为 DT D T
1. 行列式与它的转置行列式相等即 D=DT D = D T
2. 某列(行)相加可拆项。即若行列式的某一行或某一列的元素都是两数之和,则D等于两个行列式之和(仅拆分一列(行),其他列(行)保持不变);
3. 行列式某一列(行)的公因子可以提到行列式外;(若行列式有某一行(列)元素全为零,则行列式的值为零)
4. 交换行列式两行(列)的位置,行列式正负性改变;
5. 行列式的某一行(列)加上另一行(列)的常数倍,行列式的值不变;


参考课程:
《线性代数(先修课)》——学堂在线(清华大学,杨晶老师)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vi_NSN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值