基于D-Mixer与TransXNet的YOLOv8改进—融合全局-局部特征与空间降维注意力机制的CNN-ViT混合架构

随着目标检测任务对精度与效率要求的不断提升,传统的卷积神经网络(CNN)在建模长程依赖和复杂语义关系方面逐渐暴露出其局限性。而视觉Transformer(ViT)虽然在全局信息建模上表现优异,却因计算开销大、局部细节感知能力不足,在实时检测任务中难以直接部署。本文提出一种面向YOLOv8的创新架构改进方案 ,引入两个核心模块:D-Mixer(Dual-level Feature Mixer)与TransXNet(Transformed Cross-dimension Network),分别实现多尺度特征的全局-局部信息聚合 与空间维度高效压缩 ,构建出一种CNN与ViT深度融合的混合架构 ,在保持高精度的同时兼顾检测速度。

🔥本文贡献亮点
YOLOv8基础上,我们进行了两项核心模块级创新 ,并成功实现了模型性能的显著提升:

  1. 重叠空间降维注意力(Overlapped Spatial Reduction Attention, OSRA
  2. 混合网络模块D-MixerDual-level Feature Mixer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Stara-AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值