目标检测任务的核心在于同时定位和分类图像中的目标对象。YOLO系列算法因其单阶段检测的特点,能够在保证高精度的同时实现高效的推理速度。YOLOv8在继承前代优点的基础上,引入了更灵活的模块化设计、改进的损失函数以及更强的训练策略,使其在多个公开数据集上表现出色。然而,模型训练过程中涉及的多个超参数(如学习率、正则化系数、数据增强策略等)和架构选择会对最终性能产生显著影响。为了更好地理解这些因素的作用,研究人员通常需要对训练过程中的关键指标进行详细分析。其中,训练损失(Training Loss)和平均精度(mAP, mean Average Precision) 是两个最重要的指标。
1. YOLOv8的关键指标与数学基础
1.1 训练损失(Training Loss)
训练损失是模型在训练过程中用于优化的目标函数值,反映了模型对训练数据的拟合程度。
(1)定位损失(Localization Loss)
定位损失衡量预测框与真实框之间的偏差,通常采用CIoU(Complete Intersection over Union)或DIoU