文章目录
1.预备知识
1.1标准形式及化为标准形式的方法
对于一个线性规划 , 由于其约束是由线性等式以及线性不等式构成的 , 而在线性等式中寻找可行点 (比如求线性方程组) 比在线性不等式中寻找可行点的难度要小得多 , 对于任意一条线性不等式约束(不妨设为第 𝑖 个约束)
𝑎𝑖1𝑥1+𝑎𝑖2𝑥2+⋯+𝑎𝑖𝑛𝑥𝑛⩽𝑏𝑖,
我们引入新的变量 𝑠𝑖⩾0 使得原约束变为等式约束
𝑎𝑖1𝑥1+𝑎𝑖2𝑥2+⋯+𝑎𝑖𝑛𝑥𝑛+𝑠𝑖=𝑏𝑖
将一个线性规划问题中所有不等式约束等式化后我们得到线性规划的标准形式
集合 𝐷={𝑎𝑖1𝑥1+𝑎𝑖2𝑥2+⋯+𝑎𝑖𝑛𝑥𝑛=𝑏𝑖∣𝑥𝑖⩾0,𝑖=1,2,⋯,𝑚} 称为问题的可行域 , 𝐷 中每个点都是问题的一个解 , 称为可行解 , 而使得问题达到最小值的可行解称为最优解 , 对于一个线性规划问题 , 其不一定有最优解 , 因为可行域可以无界 , 当然 , 若存在最优解 , 也不一定唯一。