车道线分割实战:基于 UNet 与 PVT 的深度学习方法

1. 引言

车道线检测是自动驾驶和高级驾驶辅助系统(ADAS)中的关键任务。本项目采用 UNet 及其变种,结合 PVT(Pyramid Vision Transformer) 进行 车道线语义分割,以提高复杂场景下的检测精度和鲁棒性。本文将详细解析 模型架构、训练流程、数据处理及优化策略。


2. 车道线分割模型解析

2.1 UNet 及其变种

本项目的核心模型为 UNet 及其改进版本,包括:

  1. 标准 UNet(unet.py

    • 采用经典 编码-解码结构(Encoder-Decoder),使用 双卷积(DoubleConv) 进行特征提取,并通过 上采样(UpSampling) 进行特征融合。
    • 结合 PVT(Pyramid Vision Transformer) 作为主干网络,用于增强全局特征建模能力。
  2. UNet 变体(unet44.py & unetuc.py

    • unet44.py 使用 PVT-Small 作为编码器,取代了传统 CNN,使得模型在处理远距离依赖关系时更加高效。
    • unetuc.py 提供 二值化后处理,增强了车道线分割的鲁棒性。

2.2 UNet 模型结构

标准 UNet 结构编码器(Encoder)跳跃连接(Skip Connections)解码器(Decoder)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值