1. 引言
车道线检测是自动驾驶和高级驾驶辅助系统(ADAS)中的关键任务。本项目采用 UNet 及其变种,结合 PVT(Pyramid Vision Transformer) 进行 车道线语义分割,以提高复杂场景下的检测精度和鲁棒性。本文将详细解析 模型架构、训练流程、数据处理及优化策略。
2. 车道线分割模型解析
2.1 UNet 及其变种
本项目的核心模型为 UNet 及其改进版本,包括:
-
标准 UNet(
unet.py
):- 采用经典 编码-解码结构(Encoder-Decoder),使用 双卷积(DoubleConv) 进行特征提取,并通过 上采样(UpSampling) 进行特征融合。
- 结合 PVT(Pyramid Vision Transformer) 作为主干网络,用于增强全局特征建模能力。
-
UNet 变体(
unet44.py
&unetuc.py
):unet44.py
使用 PVT-Small 作为编码器,取代了传统 CNN,使得模型在处理远距离依赖关系时更加高效。unetuc.py
提供 二值化后处理,增强了车道线分割的鲁棒性。
2.2 UNet 模型结构
标准 UNet 结构 由 编码器(Encoder)、跳跃连接(Skip Connections) 和 解码器(Decoder)