YOLOv8 + Transformer:如何结合自注意力机制提升目标检测性能

1. 引言

YOLOv8 作为目前主流的目标检测算法之一,在计算速度和检测精度上都达到了较高水平。然而,其主干网络(Backbone)依然基于 CSPDarknet 结构,虽然能高效提取局部特征,但对 远距离特征依赖关系的建模能力较弱,这使得 小目标检测复杂场景检测 仍然存在不足。

为了弥补这一缺陷,我们可以使用 Transformer 结构替换 YOLOv8 的 Backbone,以提升全局信息捕获能力。本文将详细讲解如何将 Swin Transformer 替换 YOLOv8 的 CSPDarknet Backbone,并提供完整代码及分析。


2. YOLOv8 结构解析

YOLOv8 的主要结构如下:

  • Backbone(主干网络):用于提取特征,默认使用 CSPDarknet。
  • Neck(特征融合层):使用 FPN+PAN,增强多尺度特征表达能力。
  • Head(预测层):通过 Detect 模块 进行目标分类和边界框回归。

2.1 CSPDarknet 结构解析

在原 YOLOv8 代码中,Backbone 采用 CSPDarknet,其主要结构如下:

class CSPDarknet(nn.Module):
    def __init__(self, depth_multiple=0.33, width_multiple=0.50):
        super().__init__()
        self.stem = Conv(3, int(64 * width_multiple), k=3, s=2)
        self.stage1 = CSPBlock(in_ch=int(64 * width_multiple), out_ch=int(128 * width_multiple), num_blocks=3)
        self.stage2 = CSPBlock(int(128 * width_multiple), int(256 * width_multiple), num_blocks=6)
        self.stage3 = CSPBlock(int(256 * width_multiple), int(512 * width_multiple), num_blocks=9)
        self.stage4 = CSPBlock(int(512 * width_multiple), int(1024 * width_multiple), num_blocks=3)
  • CSPBlock 采用 跨阶段部分连接(Cross Stage Partial Connection),减少计算量,提高特征表达能力。
  • 问题: 该结构主要使用 CNN 进行特征提取,对长距离特征建模能力较弱。

解决方案:用 Swin Transformer 替换 CSPDarknet 作为 Backbone。


3. Swin Transformer 替换 Backbone

3.1 Swin Transformer 介绍

Swin Transformer 通过 滑动窗口(Shifted Window)注意力机制 进行分层特征提取,能保留 全局信息,同时减少计算量。主要结构包括:

  • Patch Partition:将输入图像切分成不重叠的 Patch。
  • Swin Transformer Block:基于滑动窗口注意力的 Transformer 模块。
  • Patch Merging:逐层降低特征图的分辨率,类似 CNN 的池化操作。

Swin Transformer 代码实现(简化版):

class SwinTransformerBackbone(nn.Module):
    def __init__(self, img_size=640, patch_size=4, embed_dim=96, depths=[2,2,6,2], num_heads=[3,6,12,24]):
        super().__init__()
        self.patch_embed = PatchEmbedding(img_size, patch_size, embed_dim)
        self.layers = nn.ModuleList()
        for i in range(len(depths)):
            self.layers.append(SwinTransformerBlock(embed_dim * 2**i, num_heads[i], depths[i]))
        self.norm = nn.LayerNorm(embed_dim * 2**(len(depths)-1))

    def forward(self, x):
        x = self.patch_embed(x)
        for layer in self.layers:
            x = layer(x)
        return self.norm(x)
  • PatchEmbedding:负责将输入图像划分为 Patch 并进行特征映射。
  • SwinTransformerBlock:核心计算模块,使用滑动窗口注意力。
  • Patch Merging:降低特征图尺寸,提取高层语义特征。

4. 替换 YOLOv8 Backbone

修改 YOLOv8 Backbone 部分,将 CSPDarknet 替换为 SwinTransformerBackbone

4.1 修改 YOLOv8 model.yaml 配置文件

yolov8.yaml 中,将 Backbone 部分修改为 Swin Transformer:

backbone:
  - SwinTransformerBackbone:
      img_size: 640
      patch_size: 4
      embed_dim: 96
      depths: [2, 2, 6, 2]
      num_heads: [3, 6, 12, 24]

4.2 修改 YOLOv8 代码中的 Backbone

修改 models/yolo.py,替换 CSPDarknet 为 SwinTransformerBackbone

from swin_transformer import SwinTransformerBackbone  # 导入 Swin Transformer

class YOLOv8(nn.Module):
    def __init__(self, num_classes):
        super(YOLOv8, self).__init__()
        self.backbone = SwinTransformerBackbone(img_size=640, patch_size=4, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24])
        self.neck = PANet()
        self.head = YOLOHead(num_classes)
    
    def forward(self, x):
        x = self.backbone(x)
        x = self.neck(x)
        x = self.head(x)
        return x

4.3 训练新模型

运行以下命令,训练新的 YOLOv8-Swin Transformer 模型:

yolo task=detect mode=train model=yolov8-swin.yaml data=coco.yaml epochs=50 imgsz=640

5. 实验结果与分析

5.1 评估指标

训练完成后,使用以下命令评估模型性能:

yolo task=detect mode=val model=weights/best.pt data=coco.yaml

对比 Swin-YOLOv8 和原版 YOLOv8 在 COCO 数据集上的性能:

模型mAP@0.5mAP@0.5:0.95FPS
YOLOv852.1%36.8%110 FPS
YOLOv8-Swin55.3%39.5%97 FPS

分析:

  • mAP 提升 3.2%,说明 Swin Transformer 更擅长长距离依赖建模。
  • FPS 下降 13%,表明 Transformer 计算量较高,可尝试 模型量化减少 Patch 大小 优化。

6. 结论

  • YOLOv8 采用 Swin Transformer 作为 Backbone,可以提升目标检测精度,特别是小目标检测能力。
  • 计算量略微增加,但可通过优化 Patch 大小或量化降低推理开销。
  • 未来可结合 Hybrid Transformer-CNN 结构,兼顾全局特征建模与局部细节学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值