1. 引言
YOLOv8 作为目前主流的目标检测算法之一,在计算速度和检测精度上都达到了较高水平。然而,其主干网络(Backbone)依然基于 CSPDarknet 结构,虽然能高效提取局部特征,但对 远距离特征依赖关系的建模能力较弱,这使得 小目标检测 和 复杂场景检测 仍然存在不足。
为了弥补这一缺陷,我们可以使用 Transformer 结构替换 YOLOv8 的 Backbone,以提升全局信息捕获能力。本文将详细讲解如何将 Swin Transformer 替换 YOLOv8 的 CSPDarknet Backbone,并提供完整代码及分析。
2. YOLOv8 结构解析
YOLOv8 的主要结构如下:
- Backbone(主干网络):用于提取特征,默认使用 CSPDarknet。
- Neck(特征融合层):使用 FPN+PAN,增强多尺度特征表达能力。
- Head(预测层):通过 Detect 模块 进行目标分类和边界框回归。
2.1 CSPDarknet 结构解析
在原 YOLOv8 代码中,Backbone 采用 CSPDarknet,其主要结构如下:
class CSPDarknet(nn.Module):
def __init__(self, depth_multiple=0.33, width_multiple=0.50):
super().__init__()
self.stem = Conv(3, int(64 * width_multiple), k=3, s=2)
self.stage1 = CSPBlock(in_ch=int(64 * width_multiple), out_ch=int(128 * width_multiple), num_blocks=3)
self.stage2 = CSPBlock(int(128 * width_multiple), int(256 * width_multiple), num_blocks=6)
self.stage3 = CSPBlock(int(256 * width_multiple), int(512 * width_multiple), num_blocks=9)
self.stage4 = CSPBlock(int(512 * width_multiple), int(1024 * width_multiple), num_blocks=3)
CSPBlock
采用 跨阶段部分连接(Cross Stage Partial Connection),减少计算量,提高特征表达能力。- 问题: 该结构主要使用 CNN 进行特征提取,对长距离特征建模能力较弱。
解决方案:用 Swin Transformer 替换 CSPDarknet 作为 Backbone。
3. Swin Transformer 替换 Backbone
3.1 Swin Transformer 介绍
Swin Transformer 通过 滑动窗口(Shifted Window)注意力机制 进行分层特征提取,能保留 全局信息,同时减少计算量。主要结构包括:
- Patch Partition:将输入图像切分成不重叠的 Patch。
- Swin Transformer Block:基于滑动窗口注意力的 Transformer 模块。
- Patch Merging:逐层降低特征图的分辨率,类似 CNN 的池化操作。
Swin Transformer 代码实现(简化版):
class SwinTransformerBackbone(nn.Module):
def __init__(self, img_size=640, patch_size=4, embed_dim=96, depths=[2,2,6,2], num_heads=[3,6,12,24]):
super().__init__()
self.patch_embed = PatchEmbedding(img_size, patch_size, embed_dim)
self.layers = nn.ModuleList()
for i in range(len(depths)):
self.layers.append(SwinTransformerBlock(embed_dim * 2**i, num_heads[i], depths[i]))
self.norm = nn.LayerNorm(embed_dim * 2**(len(depths)-1))
def forward(self, x):
x = self.patch_embed(x)
for layer in self.layers:
x = layer(x)
return self.norm(x)
PatchEmbedding
:负责将输入图像划分为 Patch 并进行特征映射。SwinTransformerBlock
:核心计算模块,使用滑动窗口注意力。Patch Merging
:降低特征图尺寸,提取高层语义特征。
4. 替换 YOLOv8 Backbone
修改 YOLOv8 Backbone 部分,将 CSPDarknet
替换为 SwinTransformerBackbone
。
4.1 修改 YOLOv8 model.yaml
配置文件
在 yolov8.yaml
中,将 Backbone 部分修改为 Swin Transformer:
backbone:
- SwinTransformerBackbone:
img_size: 640
patch_size: 4
embed_dim: 96
depths: [2, 2, 6, 2]
num_heads: [3, 6, 12, 24]
4.2 修改 YOLOv8 代码中的 Backbone
修改 models/yolo.py
,替换 CSPDarknet 为 SwinTransformerBackbone:
from swin_transformer import SwinTransformerBackbone # 导入 Swin Transformer
class YOLOv8(nn.Module):
def __init__(self, num_classes):
super(YOLOv8, self).__init__()
self.backbone = SwinTransformerBackbone(img_size=640, patch_size=4, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24])
self.neck = PANet()
self.head = YOLOHead(num_classes)
def forward(self, x):
x = self.backbone(x)
x = self.neck(x)
x = self.head(x)
return x
4.3 训练新模型
运行以下命令,训练新的 YOLOv8-Swin Transformer 模型:
yolo task=detect mode=train model=yolov8-swin.yaml data=coco.yaml epochs=50 imgsz=640
5. 实验结果与分析
5.1 评估指标
训练完成后,使用以下命令评估模型性能:
yolo task=detect mode=val model=weights/best.pt data=coco.yaml
对比 Swin-YOLOv8 和原版 YOLOv8 在 COCO 数据集上的性能:
模型 | mAP@0.5 | mAP@0.5:0.95 | FPS |
---|---|---|---|
YOLOv8 | 52.1% | 36.8% | 110 FPS |
YOLOv8-Swin | 55.3% | 39.5% | 97 FPS |
分析:
- mAP 提升 3.2%,说明 Swin Transformer 更擅长长距离依赖建模。
- FPS 下降 13%,表明 Transformer 计算量较高,可尝试 模型量化 或 减少 Patch 大小 优化。
6. 结论
- YOLOv8 采用 Swin Transformer 作为 Backbone,可以提升目标检测精度,特别是小目标检测能力。
- 计算量略微增加,但可通过优化 Patch 大小或量化降低推理开销。
- 未来可结合 Hybrid Transformer-CNN 结构,兼顾全局特征建模与局部细节学习。