1. 引言
ChatTTS 是一款高性能的 文本转语音(TTS) 模型,支持自然流畅的语音合成,适用于 智能客服、语音助手、有声阅读 等应用场景。与 CosyVoice、VITS 等模型相比,ChatTTS 在 情感表达、语速控制、音色变化 方面表现更优。
本教程将详细介绍 如何在本地环境中部署 ChatTTS,包括:
- 环境配置与安装依赖
- 下载和加载 ChatTTS 模型
- 本地推理示例
- 本地 API 服务器部署(Flask)
- 轻量化优化与 Docker 部署
2. 环境配置
2.1 运行环境要求
ChatTTS 需要较强的计算资源,推荐配置如下:
- 操作系统:Windows 10/11、Ubuntu 20.04+、macOS(Apple Silicon 需适配)
- Python 版本:Python 3.8+
- GPU(可选):建议 NVIDIA RTX 3060 及以上
- CUDA(可选):CUDA 11.3+,用于 GPU 加速
2.2 安装依赖
首先,安装 Python 依赖库:
pip install torch torchaudio numpy soundfile pydub
pip install chattts
如果使用 GPU 加速,请安装适配的 PyTorch 版本:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
验证 GPU 是否可用:
import torch
print(torch.__version__)
print(torch.cuda.is_available()) # True 表示 GPU 可用
3. 下载和加载 ChatTTS 模型
3.1 下载预训练模型
从 Hugging Face 或官方 GitHub 下载模型权重文件:
wget https://huggingface.co/chattts/chattts-0.5B/resolve/main/chattts-0.5B.pth -O chattts-0.5B.pth
或者使用 Python 下载:
import requests
url = "https://huggingface.co/chattts/chattts-0.5B/resolve/main/chattts-0.5B.pth"
response = requests.get(url)
with open("chattts-0.5B.pth", "wb") as f:
f.write(response.content)
3.2 加载模型
from chattts import ChatTTS
model_path = "chattts-0.5B.pth"
model = ChatTTS(model_path=model_path, device="cuda" if torch.cuda.is_available() else "cpu")
4. 语音合成示例
4.1 基本文本转语音
text = "你好,欢迎使用 ChatTTS 进行语音合成!"
output_wav = "output.wav"
model.tts(text, output_wav)
print("语音合成完成,文件已保存:output.wav")
4.2 调整音色与语速
model.tts("你好,这是测试语音。", "voice1.wav", speaker_id=1)
model.tts("这是一个慢速朗读的示例。", "slow.wav", speed=0.8, pitch=1.2)
4.3 情感控制(可选)
model.tts("这是一个充满情感的朗读。", "emotion.wav", emotion="happy")
5. 本地部署 ChatTTS API
5.1 通过 Flask 提供 API 服务
from flask import Flask, request, send_file
app = Flask(__name__)
@app.route("/tts", methods=["POST"])
def tts():
text = request.json.get("text", "")
output_file = "output.wav"
model.tts(text, output_file)
return send_file(output_file, mimetype="audio/wav")
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000)
运行命令:
python tts_server.py
然后可以用 curl
发送请求:
curl -X POST "http://localhost:5000/tts" -H "Content-Type: application/json" -d '{"text":"你好,世界!"}' --output output.wav
5.2 使用 Docker 部署
创建 Dockerfile
:
FROM python:3.8
WORKDIR /app
COPY . /app
RUN pip install torch torchaudio pydub soundfile chattts flask
CMD ["python", "tts_server.py"]
构建和运行 Docker 容器:
docker build -t chattts-server .
docker run -p 5000:5000 chattts-server
6. 运行优化与轻量化策略
6.1 使用 GPU 加速
model = ChatTTS(model_path="chattts-0.5B.pth", device="cuda")
6.2 轻量化优化(INT8 量化)
import torch
from torch.quantization import quantize_dynamic
model = ChatTTS(model_path="chattts-0.5B.pth", device="cpu")
model = quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
7. 结论
- ChatTTS 提供高质量 TTS,可本地运行并支持 API 部署。
- 支持 Flask API、本地服务器以及 Docker 部署,便于集成。
- 量化优化(INT8)可降低计算需求,适用于低功耗设备。
🚀 希望本教程对你有所帮助,快来尝试 ChatTTS 的本地语音合成吧!