【算法每日一练]-图论 篇1(模板篇) floyed算法 ,dijkstra算法 ,spfa算法

今天开始讲图论

目录

 图的存储

 算任意两点的最短路径:

     floyed算法:

 算一个点到其他所有点的最短距离

    dijkstra算法:

    spfa算法:


        

      

 图的存储

其实:邻接矩阵和链式向前星都能存边的信息,vector只能存点的信息,再搭配上v[]便可存点的权值,如果是树的话也建议vector)

     
    邻接矩阵:(可存边信息)
    邻接表:vector法(存点信息)(也可以搞一个fa[]存每个点父亲)

    链式向前星(存边信息)
    

链式向前星就是存起点周围边的信息。

邻接表直接是存起点周围的终点 

下面是链式向前星的模板 

#include <bits/stdc++.h>
using namespace std; 
int tot,n,m;
int head[100];//存放每个点起边的标号
struct edge{
	int to,w,next;//to是边终点,next是下一条边的标号(不用存起点,因为我们是通过起点来找边号的)
}e[100];//存储边,每条边都有唯一下标
void add(int u,int v,int w){
	e[++tot].to=v; //这里我们一般从1开始存边,是因为head里面我们默认0时无边 !!!
	e[tot].w=w;
	e[tot].next=head[u];	head[u]=tot;//后来的边就插在最前面(这里有个细节:因为最开始head内容是0,所以最后一个边的next一定是0)
}
int main(){
	int u,v,w;
	cin>>n>>m; //n个点,m个边
	for(int i=1;i<=m;i++){
		cin>>u>>v>>w;
		add(u,v,w);
	}
	for(int x=1;x<=n;x++){//把每个起点都遍历一遍
		for(int i=head[x];i!=0;i=e[i].next){ //遍历每个点连的边i
			cout<<x<<','<<e[i].to<<'\n';
		}
	}	
}

      

      

算任意两点的最短路径:

     
floyed算法:

O(n^3) 可以处理负权图,不能判断负环图

        
思想:从第一个点开始,循环n次,依次加入每个点,看看因为这个点的加入,所有点间距离因此而变小就更新。

int main(){    //floyed算法
	int n;cin>>n;int d[n+1][n+1];
	memset(d,0x3f,sizeof(d));//若是无向图,对角点初始化为0即可,有联系的点间放权值即可;对角点要初始化
	for(int k=1;k<=n;k++)//依次放入每个点进行上个点的基础上全图中转
		for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++){
			if(d[i][j]>d[i][k]+d[k][j])//d[i][j]的每次更新相对于k来讲都是正确的
			  d[i][j]=d[i][k]+d[k][j];		
		}
}

注意事项:循环只能放在外面!!!(听我分析)

      

k的每次循环实质上是引入一个新中转点来给所有边松弛一下。
那么如果在k-1个松弛点的基础上dp[i][k],dp[k][j],dp[i][j]都不是INF,也就是都是连通的。引入新的k点后是否对dp[i][j]继续松弛就要看上个松弛的结果,如果d[i][j]>d[i][k]+d[k][j]就更新,意思是引入了第k个点后的最短距离。因此k必须放到最外面。
所以其实floyd的更新也是按照topo序的一种更新(想想k是不是按这个顺序的)
         

       

        

 算一个点到其他所有点的最短距离

      
spfa算法

O(nm)=O(KV) 可以处理负权图,判断负环图(负环就是一圈相加起来的权值是个负数)

        
思想:先将起点加入队列,每次从队列中取出一个点,遍历相邻边找到因该点加入而距离变小的点更新,更新成功的点重新入队,重复至队空

     

bellman-ford算法

时间复杂度O(nm)  可以处理负权图,判断负环图

     

dijkstra算法

O(n^2)或O(nlogn)  只能处理非负权图

        
思想:每次贪心地选出一个最小路径的点变成白点(确定点),遍历相邻边找到因该点加入而距离变小的点更新,重复至队空(白点自动会跳过)

(如果出现负权,这会直接导致选白点的时候就出错了,因此就不能使用该算法)

      

       

上模板:(先给个题)

         

                

dijkstra算法:

(原理:贪心思想,确定白点的过程就是贪心,故不能处理负边权) 

               

1. 初始化dis[s]=0,然后起点入队。
2. 取出队中dis值最小的点cur,变成白点后遍历周围点v变短就更新dis[v] (若cur已为白点,就跳过)                    
3,被更新的点和dis入队,等待变成白点。
4,重复操作,直到队空,也就是所有点都变成了白点
     

        

注意:队列一些点的dis值会越来越多,分两种情况:(对蓝点)取出来的一定是可以变成白点的,不用管; (对白点)dis中值一定比队列中的小,我们跳过即可

      
我们提供有两种判断办法
第一种是对出队元素pos的dis和dis[cur]比较,若不相等则说明选出旧白点了,就跳过
第二种方法是对已经成为白点的进行标记,若出队元素早已经是白点了,就跳过

#include <bits/stdc++.h>                
using namespace std;
typedef pair<int,int> pa;  //pair中first是距离,second是起点到的它点
const int N=1e5+10,M=2e5+10;
int n,m,s,t,tot;
int pre[N];
int head[N],dis[N],vis[N]; //head[i]存放起点i周围的边号,vis标记此点是否为白点(即已确定的点)
struct edge {int to,w,next; } e[M];//如果N,M没有const修饰,这里要报错的
priority_queue<pa,vector<pa>,greater<pa>> Q; //小根堆,按dis升序排列

void add(int u,int v,int w) {e[++tot]=(edge){v,w,head[u]};head[u]=tot;}
void dijkstra(int s) {
	memset(dis,0x3f,sizeof(dis));dis[s]=0;
	Q.push(make_pair(0,s));  //make_pair函数的返回值是一个pair,功能是将两个数据合成一个pair
	while (!Q.empty()) {
		int cur=Q.top().second;Q.pop();//出队就相当于取出最小蓝点
		if (vis[cur]) continue;//跳过旧白点
		vis[cur]=1;
		for (int i=head[cur];i;i=e[i].next) { //i为边号  遍历cur连向周围所有边i的点v
			int v=e[i].to,w=e[i].w; 
			if (dis[cur]+w<dis[v]) dis[v]=dis[cur]+w,Q.push(make_pair(dis[v],v));//更新后就要入队,等待重新更新周围点
			
		}
	}
}
int main() {
	cin>>n>>m>>s;int u,v,w;
	for (int i=1;i<=m;++i) {
		cin>>u>>v>>w;
		add(u,v,w);
	}
	dijkstra(s);
	for (int i=1;i<=n;++i) cout<<dis[i]<<' ';
	return 0;
}

你可以理解成是建了一棵大关系树。然后从结尾的点倒着找就能找到整个路径 

//另一个判断方式+具体路径输出
void print(int u){
	if(u==0)return;
	print(pre[u]);
	cout<<u<<"->";
}
void dijkstra(int s) {
	memset(dis,0x3f,sizeof(dis));dis[s]=0;
	Q.push(make_pair(0,s));  
	while (!Q.empty()) {
		int pos=Q.top().second,dis_=Q.top().first; Q.pop();
		if (dis_!=dis[pos]) continue;//跳过旧白点
		for (int i=head[pos];i;i=e[i].next) { 
			int to=e[i].to,w=e[i].w;   
			if (dis[pos]+w<dis[to]) dis[to]=dis[pos]+w,pre[to]=pos,Q.push(make_pair(dis[to],to));
		}
	}
}
main:
	for (int i=1;i<=n;++i) {
		cout<<dis[i]<<": ";
		print(i);cout<<'\n';
	}

你以为完了吗?下面介绍的才是dijkstra的精华 

                

【dijkstra的思想】:(是按照topo序的)

按照topo序来用已确定点推下个未确定点,然后未确定点由前面多个已确定点更新!

        

首先,图的dp和一般的dp不太一样,一般的dp按照前后顺序可以直接未确定点由已确定点转移。但是图不行,你的点都很混乱,这个指向那个,那个又指向别的…………

最好是按照topo序来用已确定点推下个未确定点,然后未确定点由前面多个已确定点决策更新。

        
那么这种思想的关键是两个:

一个是【topo序选点】,一个是【更新未确定点】操作

(在本题中)
【选点】选松弛点:(提示:只有在某个点被变成白点的时候才能对周围的点进行更新,从而得出:一个点的更新过程一定不可能借助于旧的白点,因为每个白点只能被确定一次!)选松弛点就是选已经确定不会再被更新的点。那么原则就是最小的dis值点,因为边权非负,那么队列中其他的dis本来就更大(不考虑旧白点),再加一个正数后必然更新不了此点。

        
【更新未确定点】松弛操作:用已确定点来更新周围的点。  (周围已经确定的点不能再更新,当然很多时候也更新不了)

        

理解以上这些话后,很多dijkstra的变种题你就能做了。

        

        

spfa算法步骤:

        

spfa算法对比dijkstra真的就少了一个取白点的过程,多了一个判断是否在队列过程。

     
1. 初始化dis[s]=0 (vis[s]=1)
2,cur出队,遍历周围点v,当dis[cur]+w<dis[v],就更新dis[v](vis[cur]=0)
3,被更新的点入队,等待重新更新周围点(vis[v]=1)(这一步与dijkstra不同,因为已经入过队的可能还会入队,故可处理负边权)
4,重复操作,直到队空
      

另外补充一下:spfa可以直接处理最长路,不过是初始化dis成无穷小即可;当然你也可以把权值变成负,然后去跑最短路,结果再负一下(有点像曲线救国)。 

        

#include <bits/stdc++.h>
using namespace std;  
const int N=1e4, M=1e4;
int head[N],vis[N],dis[N],tot,n,m;//head是表头(head[i]表示i起点的边号),vis表示该点是否已在队列中,为了防止同个点重复入队
struct node{int to,w,next;} e[M];
void add(int u,int v,int w){e[++tot]=(node){v,w,head[u]};head[u]=tot;}
void spfa(int t){
	queue<int> q;
	memset(dis,0x3f,sizeof(dis));
	dis[t]=0;	vis[t]=1; //注意vis等于1表示队列中已经存在此点
	q.push(t);
	while(!q.empty()){
		int cur=q.front();	q.pop();
		vis[cur]=0;//扩展后此点出队
		for(int i=head[cur];i;i=e[i].next){//i是边号  遍历点cur连向的周围边i的点v
			int v=e[i].to,w=e[i].w;
			if(dis[v]>dis[cur]+w){//判断是否需要更新,更新过的且不在队伍的点才入队,方便找更优解
				dis[v]=dis[cur]+w;
				if(!vis[v])q.push(v),vis[v]=1;
			}
		}
	}
}
int main(){
	int n,m,t;
	cin>>n>>m>>t;
	for(int i=1;i<=m;i++){
		int u,v,w;
		cin>>u>>v>>w;
		add(u,v,w);
	}
	spfa(t);
	for(int i=1;i<=n;i++){
		cout<<dis[i]<<" ";
	}
	return 0;
}

        
【spfa思想】非topo序,就要多次更新

        
dp[v]=max(dp[u]+w) 
因为我们是从队伍中取出一个随机的点来松弛,也就是说这个点不一定是确定的点,那么对周围的点就会有错误的更新。
但不用担心,因为被更新的点一定会入队,以便将之前的错误更新给纠正过来,然后被纠正的点继续入队重复操作。
这种更新不是按topo序更新的,那么就要同一个首点对同一个尾点多次更新。(你不是topo序就要付出代价嘛)

        

但是dijkstra是每次都用已确定的点去推未确定点,然后未确定点由已确定点决策。因此出队一次就不再需要它了,因为周围点都是正确的状态。
这种更新是按照topo序的

         

         

最后给你看一下bellman,反正我不咋用

(还有bellman,还有他要书写bellman算法~~)

        

 题目:我们把上百件衣服从商店运回赛场,求最短的从上商店到赛场的路线

       
输入:第一行N(<=100),M(<=10000),N表示有几个路口(1号路口是商场所在地,n号是赛场)M表示有几条路,N=M=0时输入结束,接下来M行每行包括A,B,C表示A,B两口路需要耗时C时间

      
输出:对每组输入,输出一行,表示工作人员从商店到赛场的最短时间

    
样例: 2 1           输出:3
            1 2 3                   2
            3 3
            1 2 5
            2 3 5
            3 1 2
            0 0

#include <bits/stdc++.h>                
using namespace std;
const int N=1e4+10;
const int M=1e4+10;
long long dis[N],u[N],v[N],w[N];//按边初始化无向图
int n,m,cnt;
long long ans;
long long bellman_fold(int s,int t){
	memset(dis,0x3f,sizeof(dis));//初始化无穷大
	dis[s]=0;
	for(int i=1;i<=n-1;i++){//最多松弛n-1次
		int check=0;//是否可以提前结束松弛
		for(int j=1;j<=cnt;j++){//对每条边进行松弛,更新dis
			if(dis[u[j]]+w[j]<dis[v[j]]){
				dis[v[j]]=dis[u[j]]+w[j];
				check=1;
			}
		}
		if(check==0)break;
	}
	return dis[t];
}
int main(){
	while((cin>>n>>m)&&(n+m)){
		 cnt=1;
		for(int i=1;i<=m;i++){//初始化无向图(按边),因为只需要用到每条边,所有初始化只需要按边初始化即可
			int x,y,z;
			cin>>x>>y>>z;
			u[cnt]=x;v[cnt]=y;w[cnt]=z;//w表示每条边的长度,u表示对应边的起点,v表示对边的终点,这样方便对每条边访问
			cnt++;
			u[cnt]=y;v[cnt]=x;w[cnt]=z;
			cnt++;
		}
		ans=bellman_fold(1,n);
		cout<<ans<<endl;
	}
}

不过bellman我不怎么用,只是给出来一下。

  • 8
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值