Pytorch实现mnist手写数字识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

🏡我的环境:

  • 语言环境: Python 3.11.7
  • 编译器:Pycharm
  • 深度学习环境:
    • torch==1.12.1+cu113
    • torchvision==0.13.1+cu113

    • import os
      os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"#解决 OpenMP 初始化库的一个错误
      import torch
      import torch.nn as nn#提供了构建神经网络所需的核心功能,包括各种类型的层、损失函数、优化器等
      import matplotlib.pyplot as plt
      import torchvision#处理图像数据,构建模型,以及评估模型性能
      
      device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
      
      #导入数据(torchvision.datasets是Pytorch自带的一个数据库,使用其中的MNIST数据集)
      train_ds = torchvision.datasets.MNIST('data',#数据地址
                                            train=True,#True-训练集,False-测试集
                                            transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                            download=True)#如果为True,从互联网上下载数据集,并把数据集放在root目录下
      
      test_ds  = torchvision.datasets.MNIST('data',
                                            train=False,
                                            transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                            download=True)
      
      batch_size = 32 #每批加载的样本大小(默认值:1)
      
      #torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集
      train_dl = torch.utils.data.DataLoader(train_ds,
                                             batch_size=batch_size,
                                             shuffle=True)#如果为True,每个epoch重新排列数据。
      
      test_dl  = torch.utils.data.DataLoader(test_ds,
                                             batch_size=batch_size)
      imgs, labels = next(iter(train_dl))#train_dl 是一个 PyTorch 数据加载器(DataLoader),用于加载训练数据集。通常情况下,数据加载器会将数据集分成小批量(batches)进行处理
      #iter(train_dl) 将数据加载器转换为一个迭代器(iterator),使得我们可以使用 Python 的 next() 函数来逐个访问数据加载器中的元素——遍历
      #imgs, labels = ... 这行代码是 Python 的解构赋值语法。它将从 next() 函数返回的元素中提取出两个变量:imgs 和 labels,imgs 变量将包含一个批量的图像数据,而 labels 变量将包含相应的标签数据。这些图像和标签是从训练数据集中提取的
      imgs.shape#数据的shape为:[batch_size, channel, height, weight],batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度
      
      import numpy as np
      
      # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
      plt.figure(figsize=(20, 5))
      for i in range(20):  # Iterate over the first 20 images in the batch
          # 维度缩减
          npimg = np.squeeze(imgs[i].numpy())#squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )
          #将 PyTorch 张量转换为 NumPy 数组,然后使用函数去除数组中的单维度。 这是因为在 PyTorch 中,图像数据通常会包含一个批次维度,而numpy函数要求输入的图像是一个普通的二维数组
          # 将整个figure分成2行10列,绘制第i+1个子图。
          plt.subplot(2, 10, i + 1)
          plt.imshow(npimg, cmap=plt.cm.binary)#指定了图像的颜色映射为二进制(黑白)
          plt.axis('off')#关闭了图像的坐标轴
      
      plt.show()
      
      
      import torch.nn.functional as F
      
      num_classes = 10  # 图片的类别数
      
      
      class Model(nn.Module):
          def __init__(self):
              super().__init__()
              # 特征提取网络
              self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
              self.pool1 = nn.MaxPool2d(2)  # 设置池化层,池化核大小为2*2
              self.conv2 = nn.Conv2d(32, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3
              self.pool2 = nn.MaxPool2d(2)
      
              # 分类网络
              self.fc1 = nn.Linear(1600, 64)#第一个全连接层,输入节点数为 1600(通过两次池化后的特征图大小为 1600),输出节点数为 64
              self.fc2 = nn.Linear(64, num_classes)#第二个全连接层,输入节点数为 64,输出节点数为 ,即图像的类别数
      #全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层
      
          # 前向传播
          def forward(self, x):
              x = self.pool1(F.relu(self.conv1(x)))#在 PyTorch 中,relu激活函数。F.relu(x)
              x = self.pool2(F.relu(self.conv2(x)))
      
              x = torch.flatten(x, start_dim=1)#特征展平为一维张量,以便传递给全连接层
      
              x = F.relu(self.fc1(x))
              x = self.fc2(x)
      
              return x
      from torchinfo import summary
      device = torch.device('cpu')
      model = Model().to(device)
      summary(model)#调用函数来打印模型的摘要信息,该函数将列出模型的结构、每一层的输入形状、参数数量等重要信息
      
      Layer (type:depth-idx)                   Param #
      =================================================================
      Model                                    --
      ├─Conv2d: 1-1                            320
      ├─MaxPool2d: 1-2                         --
      ├─Conv2d: 1-3                            18,496
      ├─MaxPool2d: 1-4                         --
      ├─Linear: 1-5                            102,464
      ├─Linear: 1-6                            650
      =================================================================
      Total params: 121,930
      Trainable params: 121,930
      Non-trainable params: 0
      =================================================================
      
      
      #训练模型
      loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
      learn_rate = 1e-2 # 学习率
      opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)
      
      
      # 训练循环
      def train(dataloader, model, loss_fn, optimizer):
          size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
          num_batches = len(dataloader)  # 批次数目,1875(60000/32)
      
          train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
      
          for X, y in dataloader:  # 获取图片及其标签
              X, y = X.to(device), y.to(device)
      
              # 计算预测误差
              pred = model(X)  # 网络输出
              loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
      
              # 反向传播
              optimizer.zero_grad()  # grad属性归零
              loss.backward()  # 反向传播
              optimizer.step()  # 每一步自动更新
      
              # 记录acc与loss
              train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
              train_loss += loss.item()
      
          train_acc /= size
          train_loss /= num_batches
      
          return train_acc, train_loss
      
      
      def test(dataloader, model, loss_fn):
          size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
          num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)
          test_loss, test_acc = 0, 0
      
          # 当不进行训练时,停止梯度更新,节省计算内存消耗
          with torch.no_grad():
              for imgs, target in dataloader:
                  imgs, target = imgs.to(device), target.to(device)
      
                  # 计算loss
                  target_pred = model(imgs)
                  loss = loss_fn(target_pred, target)
      
                  test_loss += loss.item()
                  test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
      
          test_acc /= size
          test_loss /= num_batches
      
          return test_acc, test_loss
      
      
      epochs = 5
      train_loss = []
      train_acc = []
      test_loss = []
      test_acc = []
      
      for epoch in range(epochs):
          model.train()
          epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
      
          model.eval()
          epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
      
          train_acc.append(epoch_train_acc)
          train_loss.append(epoch_train_loss)
          test_acc.append(epoch_test_acc)
          test_loss.append(epoch_test_loss)
      
          template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
          print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
      print('Done')
      
      Epoch: 1, Train_acc:79.2%, Train_loss:0.735, Test_acc:93.7%,Test_loss:0.217
      Epoch: 2, Train_acc:94.7%, Train_loss:0.177, Test_acc:96.4%,Test_loss:0.124
      Epoch: 3, Train_acc:96.5%, Train_loss:0.114, Test_acc:97.2%,Test_loss:0.088
      Epoch: 4, Train_acc:97.3%, Train_loss:0.089, Test_acc:97.6%,Test_loss:0.073
      Epoch: 5, Train_acc:97.7%, Train_loss:0.077, Test_acc:97.9%,Test_loss:0.064
      import matplotlib.pyplot as plt
      
      #隐藏警告
      import warnings
      warnings.filterwarnings("ignore")               #忽略警告信息
      plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
      plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
      plt.rcParams['figure.dpi']         = 100        #分辨率
      
      epochs_range = range(epochs)
      
      plt.figure(figsize=(12, 3))
      plt.subplot(1, 2, 1)
      
      plt.plot(epochs_range, train_acc, label='Training Accuracy')
      plt.plot(epochs_range, test_acc, label='Test Accuracy')
      plt.legend(loc='lower right')
      plt.title('Training and Validation Accuracy')
      
      plt.subplot(1, 2, 2)
      plt.plot(epochs_range, train_loss, label='Training Loss')
      plt.plot(epochs_range, test_loss, label='Test Loss')
      plt.legend(loc='upper right')
      plt.title('Training and Validation Loss')
      plt.show()
    • 总结:学会使用部分函数,还需对神经网络进行进一步的理解与学习。
  • 13
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch是一种深度学习框架,可以用来实现MNIST手写数字识别MNIST是一个常用的数据集,包含了大量手写数字的图像和对应的标签。我们可以使用PyTorch来构建一个卷积神经网络模型,对这些图像进行分类,从而实现手写数字识别的功能。具体实现过程可以参考PyTorch官方文档或相关教程。 ### 回答2: MNIST是一个经典的手写数字识别问题,其数据集包括60,000个训练样本和10,000个测试样本。PyTorch作为深度学习领域的热门工具,也可以用来实现MNIST手写数字识别。 第一步是加载MNIST数据集,可以使用PyTorch的torchvision.datasets模块实现。需要注意的是,MNIST数据集是灰度图像,需要将其转换为标准的三通道RGB图像。 ```python import torch import torchvision import torchvision.transforms as transforms # 加载数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) ``` 第二步是构建模型。在MNIST手写数字识别问题中,可以选择使用卷积神经网络(CNN),其可以捕获图像中的局部特征,这对于手写数字识别非常有用。 ```python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*12*12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output model = Net() ``` 第三步是定义优化器和损失函数,并进行训练和测试。在PyTorch中,可以选择使用交叉熵损失函数和随机梯度下降(SGD)优化器进行训练。 ```python import torch.optim as optim # 定义优化器和损失函数 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 最后,可以输出测试集上的准确率。对于这个模型,可以得到大约98%的准确率,具有很好的性能。 ### 回答3: PyTorch是一个常用的深度学习框架,通过PyTorch可以方便地实现mnist手写数字识别mnist手写数字数据集是机器学习领域的一个经典数据集,用于训练和测试数字识别算法模型。以下是PyTorch实现mnist手写数字识别的步骤: 1. 获取mnist数据集:可以通过PyTorch提供的工具包torchvision来获取mnist数据集。 2. 数据预处理:将数据集中的手写数字图片转换为张量,然后进行标准化处理,使得每个像素值都在0到1之间。 3. 构建模型:可以使用PyTorch提供的nn模块构建模型,常用的模型包括卷积神经网络(CNN)和全连接神经网络(FNN)。例如,可以使用nn.Sequential()函数将多个层逐一堆叠起来,形成一个模型。 4. 训练模型:通过定义损失函数和优化器,使用训练数据集对模型进行训练。常用的损失函数包括交叉熵损失函数和均方误差损失函数,常用的优化器包括随机梯度下降(SGD)和Adam。 5. 测试模型:通过测试数据集对模型进行测试,可以用测试准确率来评估模型的性能。 以下是一个简单的PyTorch实现mnist手写数字识别的代码: ``` python import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms # 获取数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 构建模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.fc1 = nn.Linear(1024, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和更新参数 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次输出一次日志 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataset)//100, loss.item())) # 测试模型 correct = 0 total = 0 with torch.no_grad(): # 不需要计算梯度 for images, labels in test_loader: # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计预测正确数和总数 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) ``` 以上就是一个基于PyTorchmnist手写数字识别的简单实现方法。需要注意的是,模型的设计和训练过程可能会受到多种因素的影响,例如网络结构、参数初始化、优化器等,需要根据实际情况进行调整和优化,才能达到更好的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值