P5 运动

环境:

  • 语言环境:python 3.8

  • 编译器:jupyter notebook

  • 深度学习环境:Pytorch

    torch == 2.1.0+cpu

    torchvision == 0.16.0+cpu

  • 一、准备工作

    1. 导入库函数

  • import torch
    import torch.nn as nn
    import torchvision.transforms as transforms
    import torchvision
    from torchvision import transforms, datasets
    import os,PIL,pathlib,random
    

    2.加载数据

  • data_dir = "文件名"
    data_dir = pathlib.Path(data_dir)
    data_paths = list(data_dir.glob('*/'))
    classNames = [str(path).split("\\")[4] for path in data_paths]
    classNames
    

    3. 数据加载

  • # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
    train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])
    
    test_transform = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])
    
    train_dataset = datasets.ImageFolder("文件名/train",transform=train_transforms)
    test_dataset  = datasets.ImageFolder("文件名/test/",transform=train_transforms)
    batch_size = 32
    
    train_dl = torch.utils.data.DataLoader(train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True,
                                           num_workers=1)
    
    test_dl  = torch.utils.data.DataLoader(test_dataset, 
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
    for X, y in test_dl:
        print("Shape of X [N, C, H, W]: ", X.shape)
        print("Shape of y: ", y.shape, y.dtype)
        break
    

    二、CNN网络配置、编译、训练

  • 1. 模型建立

  • import torch.nn.functional as F
    
    class Model(nn.Module):
        def __init__(self):
            super(Model, self).__init__()
            self.conv1=nn.Sequential(
                nn.Conv2d(3, 12, kernel_size=5, padding=0), # 12*220*220
                nn.BatchNorm2d(12),
                nn.ReLU())
            
            self.conv2=nn.Sequential(
                nn.Conv2d(12, 12, kernel_size=5, padding=0), # 12*216*216
                nn.BatchNorm2d(12),
                nn.ReLU())
            
            self.pool3=nn.Sequential(
                nn.MaxPool2d(2))                              # 12*108*108
            
            self.conv4=nn.Sequential(
                nn.Conv2d(12, 24, kernel_size=5, padding=0), # 24*104*104
                nn.BatchNorm2d(24),
                nn.ReLU())
            
            self.conv5=nn.Sequential(
                nn.Conv2d(24, 24, kernel_size=5, padding=0), # 24*100*100
                nn.BatchNorm2d(24),
                nn.ReLU())
            
            self.pool6=nn.Sequential(
                nn.MaxPool2d(2))                              # 24*50*50
    
            self.dropout = nn.Sequential(
                nn.Dropout(0.2))
            
            self.fc=nn.Sequential(
                nn.Linear(24*50*50, len(classNames)))
            
        def forward(self, x):
            
            batch_size = x.size(0)
            x = self.conv1(x)  # 卷积-BN-激活
            x = self.conv2(x)  # 卷积-BN-激活
            x = self.pool3(x)  # 池化
            x = self.conv4(x)  # 卷积-BN-激活
            x = self.conv5(x)  # 卷积-BN-激活
            x = self.pool6(x)  # 池化
            x = self.dropout(x)
            x = x.view(batch_size, -1)  # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50
            x = self.fc(x)
           
            return x
    
    model = Model()
    Model(
      (conv1): Sequential(
        (0): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
        (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (conv2): Sequential(
        (0): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
        (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (pool3): Sequential(
        (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (conv4): Sequential(
        (0): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
        (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (conv5): Sequential(
        (0): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
        (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (pool6): Sequential(
        (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (dropout): Sequential(
        (0): Dropout(p=0.2, inplace=False)
      )
      (fc): Sequential(
        (0): Linear(in_features=60000, out_features=2, bias=True)
      )
    )
    import torchinfo
    torchinfo.summary(model) #显示模型信息
    
    

    2. 训练函数

    2.1 训练函数

  • # 训练循环
    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
        num_batches = len(dataloader)   # 批次数目,1875(60000/32)
    
        train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
        
        for X, y in dataloader:  # 获取图片及其标签
            #X, y = X.to(device), y.to(device)
            
            # 计算预测误差
            pred = model(X)          # 网络输出
            loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
            
            # 反向传播
            optimizer.zero_grad()  # grad属性归零
            loss.backward()        # 反向传播
            optimizer.step()       # 每一步自动更新
            
            # 记录acc与loss
            train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
            train_loss += loss.item()
                
        train_acc  /= size
        train_loss /= num_batches
    
        return train_acc, train_loss
    

    2.2 测试函数

  • def test (dataloader, model, loss_fn):
        size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
        num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
        test_loss, test_acc = 0, 0
        
        # 当不进行训练时,停止梯度更新,节省计算内存消耗
        with torch.no_grad():
            for imgs, target in dataloader:
                #imgs, target = imgs.to(device), target.to(device)
                
                # 计算loss
                target_pred = model(imgs)
                loss        = loss_fn(target_pred, target)
                
                test_loss += loss.item()
                test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    
        test_acc  /= size
        test_loss /= num_batches
    
        return test_acc, test_loss
    

    2.3 设置动态学习率

  • def adjust_learning_rate(optimizer, epoch, start_lr):
        # 每 2 个epoch衰减到原来的 0.98
        lr = start_lr * (0.92 ** (epoch // 2))
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr
    
    learn_rate = 1e-4 # 初始学习率
    optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)
    #opt = torch.optim.Adam(model.parameters(), lr=learn_rate)
    

    2.4 模型训练

三、训练结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

总结:深度学习模型中如学习率、批次大小、层数、神经元数量等,调整这些参数以获得最佳性能,在考虑是否增加optuna库,自动调参,增加学习率调整

 

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值