第P1周:Pytorch实现mnist手写数字识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

🏡我的环境:

  • 语言环境:Python 3.11.7
  • 编译器:Pycharm
  • 深度学习环境:
    • torch==1.12.1+cu113
    • torchvision==0.13.1+cu113

一、 前期y准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"#解决 OpenMP 初始化库的一个错误
import torch
import torch.nn as nn#提供了构建神经网络所需的核心功能,包括各种类型的层、损失函数、优化器等
import matplotlib.pyplot as plt
import torchvision#处理图像数据,构建模型,以及评估模型性能

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2. 导入数据

train_ds = torchvision.datasets.MNIST('data',#数据地址
                                      train=True,#True-训练集,False-测试集
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)#如果为True,从互联网上下载数据集,并把数据集放在root目录下

test_ds  = torchvision.datasets.MNIST('data',
                                      train=False,
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)
batch_size = 32 #每批加载的样本大小(默认值:1)

#torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集
train_dl = torch.utils.data.DataLoader(train_ds,
                                       batch_size=batch_size,
                                       shuffle=True)#如果为True,每个epoch重新排列数据。

test_dl  = torch.utils.data.DataLoader(test_ds,
                                       batch_size=batch_size)
imgs, labels = next(iter(train_dl))#train_dl 是一个 PyTorch 数据加载器(DataLoader),用于加载训练数据集。通常情况下,数据加载器会将数据集分成小批量(batches)进行处理
#iter(train_dl) 将数据加载器转换为一个迭代器(iterator),使得我们可以使用 Python 的 next() 函数来逐个访问数据加载器中的元素——遍历
#imgs, labels = ... 这行代码是 Python 的解构赋值语法。它将从 next() 函数返回的元素中提取出两个变量:imgs 和 labels,imgs 变量将包含一个批量的图像数据,而 labels 变量将包含相应的标签数据。这些图像和标签是从训练数据集中提取的
imgs.shape#数据的shape为:[batch_size, channel, height, weight],batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度

3. 数据可视化

squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )。

import numpy as np

# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5))
for i in range(20):  # Iterate over the first 20 images in the batch
    # 维度缩减
    npimg = np.squeeze(imgs[i].numpy())#squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )
    #将 PyTorch 张量转换为 NumPy 数组,然后使用函数去除数组中的单维度。 这是因为在 PyTorch 中,图像数据通常会包含一个批次维度,而numpy函数要求输入的图像是一个普通的二维数组
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i + 1)
    plt.imshow(npimg, cmap=plt.cm.binary)#指定了图像的颜色映射为二进制(黑白)
    plt.axis('off')#关闭了图像的坐标轴

plt.show()

二、构建简单的CNN网络

import torch.nn.functional as F

num_classes = 10  # 图片的类别数


class Model(nn.Module):
    def __init__(self):
        super().__init__()
        # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3
        self.pool2 = nn.MaxPool2d(2)

        # 分类网络
        self.fc1 = nn.Linear(1600, 64)#第一个全连接层,输入节点数为 1600(通过两次池化后的特征图大小为 1600),输出节点数为 64
        self.fc2 = nn.Linear(64, num_classes)#第二个全连接层,输入节点数为 64,输出节点数为 ,即图像的类别数
#全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层

    # 前向传播
    def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))#在 PyTorch 中,relu激活函数。F.relu(x)
        x = self.pool2(F.relu(self.conv2(x)))

        x = torch.flatten(x, start_dim=1)#特征展平为一维张量,以便传递给全连接层

        x = F.relu(self.fc1(x))
        x = self.fc2(x)

        return x

加载并打印模型

from torchinfo import summary
device = torch.device('cpu')
model = Model().to(device)
summary(model)#调用函数来打印模型的摘要信息,该函数将列出模型的结构、每一层的输入形状、参数数量等重要信息

代码运行结果 

Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            320
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            18,496
├─MaxPool2d: 1-4                         --
├─Linear: 1-5                            102,464
├─Linear: 1-6                            650
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
=================================================================

三、 训练模型

1. 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

 2. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)  # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播
        optimizer.step()  # 每一步自动更新

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss



3. 编写测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

epochs = 5
train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')

代码运行如下 

Epoch: 1, Train_acc:79.2%, Train_loss:0.735, Test_acc:93.7%,Test_loss:0.217
Epoch: 2, Train_acc:94.7%, Train_loss:0.177, Test_acc:96.4%,Test_loss:0.124
Epoch: 3, Train_acc:96.5%, Train_loss:0.114, Test_acc:97.2%,Test_loss:0.088
Epoch: 4, Train_acc:97.3%, Train_loss:0.089, Test_acc:97.6%,Test_loss:0.073
Epoch: 5, Train_acc:97.7%, Train_loss:0.077, Test_acc:97.9%,Test_loss:0.064

四、 结果可视化

import matplotlib.pyplot as plt

#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

  • 总结:学会使用部分函数,还需对神经网络进行进一步的理解与学习。

 

  • 7
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值