【笔记】二重积分概念与计算

二重积分

二重积分的定义

∬ D f ( x , y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n f ( x i , y i ) Δ σ i \iint_{D}^{} f(x,y)\mathrm{d}\sigma = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_i,y_i)\Delta \sigma _i Df(x,y)dσ=λ0limi=1nf(xi,yi)Δσi

其中, λ \lambda λ表示 n n n个小区域中直径(小区域内两点距离的最大值)的最大值

二重积分几何意义

z = f ( x , y ) z=f(x,y) z=f(x,y)的曲顶柱体的体积

二重积分的性质

性质1(不等式)

  1. D D D上若 f ( x , y ) ≤ g ( x , y ) f(x,y)\le g(x,y) f(x,y)g(x,y),则

∬ D f ( x , y ) d σ ≤ ∬ D g ( x , y ) d σ \iint_{D}^{} f(x,y)\mathrm{d}\sigma \le \iint_{D}^{} g(x,y)\mathrm{d}\sigma Df(x,y)dσDg(x,y)dσ

  1. 若在 D D D上有 m ≤ f ( x , y ) ≤ M m \le f(x,y) \le M mf(x,y)M,则

m S ≤ ∬ D f ( x , y ) ) d σ ≤ M S mS \le \iint_Df(x,y))\mathrm{d}\sigma \le MS mSDf(x,y))dσMS

S S S D D D区域的面积

  1. 积分的绝对值小于等于绝对值的积分

∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ |\iint_{D}f(x,y)\mathrm{d}\sigma | \le \iint_{D}|f(x,y)|\mathrm{d}\sigma Df(x,y)dσDf(x,y)dσ

性质2(中值定理)

设函数 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上连续, S S S为区域 D D D的面积,则在 D D D上至少存在一点 ( ξ , η ) (\xi,\eta) (ξ,η),使得
∬ D f ( x , y ) d σ = f ( ξ , η ) ⋅ S \iint_{D}f(x,y)\mathrm{d}\sigma=f(\xi,\eta)\cdot S Df(x,y)dσ=f(ξ,η)S

二重积分的计算

通过将二重积分转化为累次积分计算。

直角坐标

y y y x x x
∬ D f ( x , y ) d σ = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y \iint_{D}f(x,y)\mathrm{d}\sigma=\int_a^bdx\int_{\varphi_1(x)}^{\varphi_2(x)}f(x,y)dy Df(x,y)dσ=abdxφ1(x)φ2(x)f(x,y)dy

x x x y y y
∬ D f ( x , y ) d σ = ∫ a b d y ∫ ϕ 1 ( y ) ϕ 2 ( y ) f ( x , y ) d x \iint_{D}f(x,y)\mathrm{d}\sigma=\int_a^bdy\int_{\phi_1(y)}^{\phi_2(y)}f(x,y)dx Df(x,y)dσ=abdyϕ1(y)ϕ2(y)f(x,y)dx

极坐标

ρ \rho ρ θ \theta θ
∬ D f ( x , y ) d σ = ∫ α β d θ ∫ φ 1 ( θ ) φ 2 ( θ ) f ( ρ cos ⁡ θ , ρ sin ⁡ θ ) ρ d ρ \iint_{D}f(x,y)\mathrm{d}\sigma=\int_\alpha^\beta d\theta\int_{\varphi_1(\theta)}^{\varphi_2(\theta)}f(\rho \cos\theta, \rho \sin\theta)\rho d\rho Df(x,y)dσ=αβdθφ1(θ)φ2(θ)f(ρcosθ,ρsinθ)ρdρ

适合用极坐标计算的二重积分特征:

  1. 适合用极坐标的被积函数

f ( x 2 + y 2 ) , f ( x y ) f(\sqrt{x^2+y^2}),f(\frac{x}{y}) f(x2+y2 ),f(yx)

  1. 适合用极坐标的区域

圆环域,圆域

x 2 + y 2 ≤ 2 a x , r 2 ≤ x 2 + y 2 ≤ R 2 x^2+y^2\le 2ax, r^2\le x^2 + y^2 \le R^2 x2+y22ax,r2x2+y2R2

利用对称性简化运算

若积分域 D D D关于 y y y轴对称,则:
∬ D f ( x , y ) d σ = { 2 ∬ D x ≥ 0 f ( x , y ) d σ , f ( − x , y ) = f ( x , y ) ; 0 , f ( − x , y ) = − f ( x , y ) . \iint_{D}f(x,y)\mathrm{d}\sigma= \left\{\begin{matrix} 2\iint_{D_{x \geq0}}f(x,y)\mathrm{d}\sigma, f(-x,y)=f(x,y);\\ 0,f(-x,y)=-f(x,y). \end{matrix}\right. Df(x,y)dσ={2Dx0f(x,y)dσ,f(x,y)=f(x,y);0,f(x,y)=f(x,y).

若积分域 D D D关于 x x x轴对称,则:
∬ D f ( x , y ) d σ = { 2 ∬ D y ≥ 0 f ( x , y ) d σ , f ( x , − y ) = f ( x , y ) ; 0 , f ( x , − y ) = − f ( x , y ) . \iint_{D}f(x,y)\mathrm{d}\sigma= \left\{\begin{matrix} 2\iint_{D_{y \geq0}}f(x,y)\mathrm{d}\sigma, f(x,-y)=f(x,y);\\ 0,f(x,-y)=-f(x,y). \end{matrix}\right. Df(x,y)dσ={2Dy0f(x,y)dσ,f(x,y)=f(x,y);0,f(x,y)=f(x,y).

利用了 f ( x , y ) f(x,y) f(x,y)奇偶性

D D D关于 y = x y=x y=x对称,则:
∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ \iint_{D}f(x,y)\mathrm{d}\sigma=\iint_{D}f(y,x)\mathrm{d}\sigma Df(x,y)dσ=Df(y,x)dσ

D D D上交换 x x x y y y D D D不变

利用被积函数对积分区域的可加性简化运算

∬ D f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ \iint_{D}f(x,y)\mathrm{d}\sigma=\iint_{D_1}f(x,y)\mathrm{d}\sigma+\iint_{D_2}f(x,y)\mathrm{d}\sigma Df(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值