【高等数学基础进阶】二重积分

二重积分的概念与性质

定义:
∬ D f ( x , y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n f ( x i , y i ) Δ σ i \iint\limits_{D}f(x,y)d \sigma=\lim\limits_{\lambda \to 0}\sum\limits_{i=1}^{n}f(x_{i},y_{i})\Delta \sigma_{i} Df(x,y)dσ=λ0limi=1nf(xi,yi)Δσi

几何意义

二重积分 ∬ D f ( x , y ) d σ \begin{aligned} \iint\limits_{D}f(x,y)d \sigma\end{aligned} Df(x,y)dσ是一个数,当 f ( x , y ) ≥ 0 f(x,y)\geq 0 f(x,y)0时,其值等于以区域 D D D为底,以曲面 z = f ( x , y ) z=f(x,y) z=f(x,y)为曲顶的曲顶柱体的体积;当 f ( x , y ) ≤ 0 f(x,y)\leq 0 f(x,y)0时,二重积分的值为负值,其绝对值等于上述圆顶柱体的体积

性质

性质1(不等式):

  1. D D D上若 f ( x , y ) ≤ g ( x , y ) f(x,y)\leq g(x,y) f(x,y)g(x,y),则 ∬ D f ( x , y ) d σ ≤ ∬ D g ( x , y ) d σ \iint\limits_{D}f(x,y)d \sigma \leq \iint\limits_{D}g(x,y)d \sigma Df(x,y)dσDg(x,y)dσ
  2. 若在 D D D上有 m ≤ f ( x , y ) ≤ M m \leq f(x,y)\leq M mf(x,y)M,则
    m S ≤ ∬ D f ( x , y ) d σ ≤ M S mS \leq \iint\limits_{D}f(x,y)d \sigma \leq MS mSDf(x,y)dσMS
  3. ∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ \left|\iint\limits_{D}f(x,y)d \sigma\right|\leq \iint\limits_{D}\left|f(x,y)\right|d \sigma Df(x,y)dσ Df(x,y)dσ

性质2(中值定理):设函数 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上连续, S S S为区域 D D D的面积,则在 D D D上至少存在一点 ( ξ , η ) (\xi ,\eta ) (ξ,η),使得
∬ D f ( x , y ) d σ = f ( ξ , η ) ⋅ S \iint\limits_{D}f(x,y)d \sigma=f(\xi ,\eta )\cdot S Df(x,y)dσ=f(ξ,η)S

二重积分计算

利用直角坐标计算

y y y x x x
∬ D f ( x , y ) d σ = ∫ a b d x ∫ ϕ 2 ( x ) ϕ 1 ( x ) f ( x , y ) d y \iint\limits_{D}f(x,y)d \sigma=\int_{a}^{b}dx \int_{\phi_{2}(x)}^{\phi_{1}(x)}f(x,y)dy Df(x,y)dσ=abdxϕ2(x)ϕ1(x)f(x,y)dy

x x x y y y
∬ D f ( x , y ) d σ = ∫ c d d y ∫ ψ 2 ( y ) ψ 1 ( y ) f ( x , y ) d x \iint\limits_{D}f(x,y)d \sigma=\int_{c}^{d}dy \int_{\psi _{2}(y)}^{\psi_{1}(y)}f(x,y)dx Df(x,y)dσ=cddyψ2(y)ψ1(y)f(x,y)dx

利用极坐标计算

ρ \rho ρ θ \theta θ
∬ D f ( x , y ) d σ = ∫ α β d θ ∫ ϕ 1 ( θ ) ϕ 2 ( θ ) f ( ρ cos ⁡ θ , ρ sin ⁡ θ ) ρ d ρ \iint\limits_{D}f(x,y)d \sigma=\int_{\alpha}^{\beta}d \theta \int_{\phi_{1}(\theta )}^{\phi_{2}(\theta )}f(\rho \cos \theta ,\rho \sin \theta )\rho d \rho Df(x,y)dσ=αβdθϕ1(θ)ϕ2(θ)f(ρcosθ,ρsinθ)ρdρ
常用于相同 θ \theta θ对应的不同 ρ \rho ρ

适合用极坐标计算的二重积分的特征

  1. 适合用极坐标计算的被积函数
    f ( x 2 + y 2 ) , f ( y x ) , f ( x y ) f(\sqrt{x^{2}+y^{2}}),f(\frac{y}{x}),f(\frac{x}{y}) f(x2+y2 ),f(xy),f(yx)
  2. 适合用极坐标的积分域
    x 2 + y 2 ≤ R 2 r 2 ≤ x 2 + y 2 ≤ R 2 x 2 + y 2 ≤ 2 a x x 2 + y 2 ≤ 2 b y \begin{aligned} x^{2}&+y^{2}\leq R^{2}\\r^{2}\leq x^{2}&+y^{2}\leq R^{2}\\x^{2}&+y^{2}\leq 2ax\\x^{2}&+y^{2}\leq 2by\end{aligned} x2r2x2x2x2+y2R2+y2R2+y22ax+y22by
    如果圆心既不在坐标原点也不在坐标轴,考虑平移+极坐标,即
    令 x − x 0 = ρ sin ⁡ θ , y − y 0 = ρ sin ⁡ θ 令x-x_{0}=\rho \sin \theta ,y-y_{0}=\rho \sin \theta xx0=ρsinθ,yy0=ρsinθ
    则有
    ∫ 0 2 π d θ ∫ 0 R ( ) ρ d ρ \int_{0}^{2\pi}d \theta \int_{0}^{R}(\quad )\rho d \rho 02πdθ0R()ρdρ

利用对称性和奇偶性计算

若积分域 D D D关于 y y y轴对称,则
∬ D f ( x , y ) d σ = { 2 ∬ D x ≥ 0 f ( x , y ) d σ f ( − x , y ) = f ( x , y ) 0 f ( − x , y ) = − f ( x , y ) \iint\limits_{D}f(x,y)d \sigma=\left\{\begin{aligned}&2\iint\limits_{D_{x \geq 0}}f(x,y)d \sigma& f(-x,y)=f(x,y)\\&0&f(-x,y)=-f(x,y)\end{aligned}\right. Df(x,y)dσ= 2Dx0f(x,y)dσ0f(x,y)=f(x,y)f(x,y)=f(x,y)

若积分域 D D D关于 x x x轴对称,则
∬ D f ( x , y ) d σ = { 2 ∬ D y ≥ 0 f ( x , y ) d σ f ( x , − y ) = f ( x , y ) 0 f ( x , − y ) = − f ( x , y ) \iint\limits_{D}f(x,y)d \sigma=\left\{\begin{aligned}&2\iint\limits_{D_{y \geq 0}}f(x,y)d \sigma&f(x,-y)=f(x,y)\\&0&f(x,-y)=-f(x,y)\end{aligned}\right. Df(x,y)dσ= 2Dy0f(x,y)dσ0f(x,y)=f(x,y)f(x,y)=f(x,y)

利用变量对称性计算

D D D关于 y = x y=x y=x对称,则
∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ \iint\limits_{D}f(x,y)d \sigma=\iint\limits_{D}f(y,x)d \sigma Df(x,y)dσ=Df(y,x)dσ

常考题型方法与技巧

累次积分交换次序及计算

例1:交换累次积分 ∫ 0 1 d x ∫ x 2 2 − x f ( x , y ) d y \begin{aligned} \int_{0}^{1}dx \int_{x^{2}}^{2-x}f(x,y)dy\end{aligned} 01dxx22xf(x,y)dy的次序

![[附件/Pasted image 20220913153102.png|200]]

原式 = ∫ 0 1 d y ∫ 0 y f ( x , y ) d x + ∫ 1 2 d y ∫ 0 2 − y f ( x , y ) d x 原式=\int_{0}^{1}dy \int_{0}^{\sqrt{y}}f(x,y)dx+\int_{1}^{2}dy \int_{0}^{2-y}f(x,y)dx 原式=01dy0y f(x,y)dx+12dy02yf(x,y)dx

例2:累次积分 ∫ 0 π 2 d θ ∫ 0 cos ⁡ θ f ( ρ cos ⁡ θ , ρ sin ⁡ θ ) ρ d ρ \begin{aligned} \int_{0}^{\frac{\pi}{2}}d \theta \int_{0}^{\cos \theta }f(\rho \cos \theta ,\rho \sin \theta )\rho d \rho\end{aligned} 02πdθ0cosθf(ρcosθ,ρsinθ)ρdρ化为直角坐标

ρ = cos ⁡ θ ⇒ ρ 2 = ρ cos ⁡ θ ⇒ x 2 + y 2 = x ρ = 0 θ ∈ ( 0 , π 2 ) \begin{aligned} \rho&=\cos \theta \Rightarrow \rho^{2}=\rho \cos \theta \Rightarrow x^{2}+y^{2}=x\\ \rho&=0\\ \theta &\in (0, \frac{\pi}{2}) \end{aligned} ρρθ=cosθρ2=ρcosθx2+y2=x=0(0,2</

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值