昇思 快速入门

 快速入门

# 本节通过MindSpore的API来快速实现一个简单的深度学习模型。若想要深入了解MindSpore的使用方法,请参阅各节最后提供的参考链接。

# In[1]:
 

import mindspore

from mindspore import nn

from mindspore.dataset import vision, transforms

from mindspore.dataset import MnistDataset

 处理数据集

本章节中的示例代码依赖`download`,可使用命令`pip install download`安装。如本文档以Notebook运行时,完成安装后需要重启kernel才能执行后续代码。

# In[2]:

# Download data from open datasets

from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \

      "notebook/datasets/MNIST_Data.zip"

path = download(url, "./", kind="zip", replace=True)

MNIST数据集目录结构如下:

# MNIST_Data

# └── train

#     ├── train-images-idx3-ubyte (60000个训练图片)

#     ├── train-labels-idx1-ubyte (60000个训练标签)

# └── test

#     ├── t10k-images-idx3-ubyte (10000个测试图片)

#     ├── t10k-labels-idx1-ubyte (10000个测试标签)

# ```

# 数据下载完成后,获得数据集对象。

# In[3]:

train_dataset = MnistDataset('MNIST_Data/train')

test_dataset = MnistDataset('MNIST_Data/test')

# 打印数据集中包含的数据列名,用于dataset的预处理。

# In[4]:

print(train_dataset.get_col_names();

# MindSpore的dataset使用数据处理流水线(Data Processing Pipeline),需指定map、batch、shuffle等操作。这里我们使用map对图像数据及标签进行变换处理,将输入的图像缩放为1/255,根据均值0.1307和标准差值0.3081进行归一化处理,然后将处理好的数据集打包为大小为64的batch。

# In[5]:

def datapipe(dataset, batch_size):

    image_transforms = [

        vision.Rescale(1.0 / 255.0, 0),

        vision.Normalize(mean=(0.1307,), std=(0.3081,)),

        vision.HWC2CHW()

    ]

    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = dataset.map(image_transforms, 'image')

    dataset = dataset.map(label_transform, 'label')

    dataset = dataset.batch(batch_size)

    return dataset

# In[6]:

# Map vision transforms and batch dataset

train_dataset = datapipe(train_dataset, 64)

test_dataset = datapipe(test_dataset, 64)

# 可使用[create_tuple_iterator](https://www.mindspore.cn/docs/zh-CN/r2.3/api_python/dataset/dataset_method/iterator/mindspore.dataset.Dataset.create_tuple_iterator.html) 或[create_dict_iterator](https://www.mindspore.cn/docs/zh-CN/r2.3/api_python/dataset/dataset_method/iterator/mindspore.dataset.Dataset.create_dict_iterator.html)对数据集进行迭代访问,查看数据和标签的shape和datatype。

# In[7]:

for image, label in test_dataset.create_tuple_iterator():

    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")

    print(f"Shape of label: {label.shape} {label.dtype}")

    break

# In[8]:

for data in test_dataset.create_dict_iterator():

    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")

    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")

    break

 网络构建

# `mindspore.nn`类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承`nn.Cell`类,并重写`__init__`方法和`construct`方法。`__init__`包含所有网络层的定义,`construct`中包含数据([Tensor](https://www.mindspore.cn/tutorials/zh-CN/r2.3/beginner/tensor.html))的变换过程。

# In[9]:

# Define model

class Network(nn.Cell):

    def __init__(self):

        super().__init__()

        self.flatten = nn.Flatten()

        self.dense_relu_sequential = nn.SequentialCell(

            nn.Dense(28*28, 512),

            nn.ReLU(),

            nn.Dense(512, 512),

            nn.ReLU(),

            nn.Dense(512, 10)

        )

    def construct(self, x):

        x = self.flatten(x)

        logits = self.dense_relu_sequential(x)

        return logits

model = Network()

print(model)

模型训练

# 在模型训练中,一个完整的训练过程(step)需要实现以下三步:

# 1. **正向计算**:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。

# 2. **反向传播**:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。

# 3. **参数优化**:将梯度更新到参数上。

# MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:

# 1. 定义正向计算函数。

# 2. 使用[value_and_grad](https://www.mindspore.cn/docs/zh-CN/r2.3/api_python/mindspore/mindspore.value_and_grad.html)通过函数变换获得梯度计算函数。

# 3. 定义训练函数,使用[set_train](https://www.mindspore.cn/docs/zh-CN/r2.3/api_python/nn/mindspore.nn.Cell.html#mindspore.nn.Cell.set_train)设置为训练模式,执行正向计算、反向传播和参数优化。

# In[11]:

# Instantiate loss function and optimizer

loss_fn = nn.CrossEntropyLoss()

optimizer = nn.SGD(model.trainable_params(), 1e-2)

# 1. Define forward function

def forward_fn(data, label):

    logits = model(data)

    loss = loss_fn(logits, label)

    return loss, logits

# 2. Get gradient function

grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 3. Define function of one-step training

def train_step(data, label):

    (loss, _), grads = grad_fn(data, label)

    optimizer(grads)

    return loss

def train(model, dataset):

    size = dataset.get_dataset_size()

    model.set_train()

    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):

        loss = train_step(data, label)

        if batch % 100 == 0:

            loss, current = loss.asnumpy(), batch

            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

# 除训练外,我们定义测试函数,用来评估模型的性能。

# In[12]:

def test(model, dataset, loss_fn):

    num_batches = dataset.get_dataset_size()

    model.set_train(False)

    total, test_loss, correct = 0, 0, 0

    for data, label in dataset.create_tuple_iterator():

        pred = model(data)

        total += len(data)

        test_loss += loss_fn(pred, label).asnumpy()

        correct += (pred.argmax(1) == label).asnumpy().sum()

    test_loss /= num_batches

    correct /= total

    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

# 训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。

# In[13]:

epochs = 3

for t in range(epochs):

    print(f"Epoch {t+1}\n-------------------------------")

    train(model, train_dataset)

    test(model, test_dataset, loss_fn)

print("Done!")

保存模型

# 模型训练完成后,需要将其参数进行保存。

# In[14]:

# Save checkpoint

mindspore.save_checkpoint(model, "model.ckpt")

print("Saved Model to model.ckpt")

加载模型

# 加载保存的权重分为两步:

# 1. 重新实例化模型对象,构造模型。

# 2. 加载模型参数,并将其加载至模型上。

# In[15]:

# Instantiate a random initialized model

model = Network()

# Load checkpoint and load parameter to model

param_dict = mindspore.load_checkpoint("model.ckpt")

param_not_load, _ = mindspore.load_param_into_net(model, param_dict)

print(param_not_load)

# > `param_not_load`是未被加载的参数列表,为空时代表所有参数均加载成功。

# 加载后的模型可以直接用于预测推理。

# In[16]:

model.set_train(False)

for data, label in test_dataset:

    pred = model(data)

    predicted = pred.argmax(1)

    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')

    break

  • 11
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值