DQN基础解析与代码实例:模拟学习倒立摆

目录

1. 前言

2. 强化学习基础

3. DQN的核心思想

4. DQN的实现步骤

4.1 环境设置

4.2 定义DQN网络

4.3 定义经验回放缓冲区

4.4 定义DQN代理

4.5 训练DQN代理

4.6 可视化训练结果

4.7 完整代码

4.8 可视化倒立摆训练完整代码

5. DQN的关键技术

5.1 经验回放

5.2 目标网络

5.3 探索与利用

6. DQN的局限性与改进方向

7. 总结


1. 前言

DQN创新性地将强化学习与神经网络相融合。强化学习是机器学习领域的重要分支,它通过让智能体(Agent)在环境中不断试错来学习最优策略。然而,传统的强化学习算法(如Q-Learning)在面对复杂问题时往往表现不佳,因为它们难以处理高维状态空间和复杂的非线性关系。如需要了解Q学习可以去看:

<Q学习的基础解析与代码实例:在网格中到达指定位置>

深度Q网络(Deep Q-Network,简称DQN)是强化学习的一个重要突破,它结合了深度学习和强化学习,通过神经网络来近似Q值函数,使得智能体能够在复杂的环境中学习到有效的策略。本文将详细介绍DQN的原理,并通过一个完整的Python代码示例,帮助大家理解和实现DQN算法。

2. 强化学习基础

在介绍DQN之前,我们先回顾一下强化学习的基本概念:

  • 智能体(Agent):学习和决策的主体。

  • 环境(Environment):智能体所处的外部世界。

  • 状态(State):智能体在环境中的当前情况。

  • 动作(Action):智能体可以采取的行为。

  • 奖励(Reward):环境对智能体行为的反馈。

  • 策略(Policy):智能体选择动作的规则。

  • Q值(Q-Value):在某个状态采取某个动作后获得的长期奖励的期望。

强化学习的目标是让智能体通过与环境的交互,学习到一个策略,使得长期累积奖励最大化。

3. DQN的核心思想

DQN的核心思想是使用深度神经网络来近似Q值函数。传统的Q-Learning算法使用表格来存储每个状态-动作对的Q值,但在高维状态空间中,这种方法是不可行的。DQN通过以下改进解决了这一问题:

  1. 经验回放(Experience Replay):将智能体与环境交互的经验存储在一个回放缓冲区中,然后从中随机抽取小批量样本进行训练,打破样本之间的相关性,提高学习稳定性。

  2. 目标网络(Target Network):使用一个独立的网络来计算目标Q值,该网络的参数定期从主网络复制,减少目标Q值的波动,提高学习的稳定性。

4. DQN的实现步骤

接下来,我们将通过一个完整的Python代码示例,展示如何实现DQN算法。我们将使用OpenAI的Gym库中的CartPole环境作为示例,这是一个经典的强化学习问题。

4.1 环境设置

首先,我们需要安装必要的库并导入所需的模块:

pip install gym torch numpy matplotlib

接着导入

import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import random
from collections import deque
import matplotlib.pyplot as plt

4.2 定义DQN网络

我们定义一个简单的神经网络来近似Q值函数:

class DQN(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(DQN, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(input_dim, 128),
            nn.ReLU(),
            nn.Linear(128, 128),
            nn.ReLU(),
            nn.Linear(128, output_dim)
        )
    
    def forward(self, x):
        return self.fc(x)
  • input_dim: 输入状态的维度(即状态空间的大小)。

  • output_dim: 输出动作的维度(即动作空间的大小)。

4.3 定义经验回放缓冲区

经验回放缓冲区用于存储智能体与环境交互的经验:

class ReplayBuffer:
    def __init__(self, capacity):
        self.buffer = deque(maxlen=capacity)
    
    def add(self, state, action, reward, next_state, done):
        self.buffer.append((state, action, reward, next_state, done))
    
    def sample(self, batch_size):
        batch = random.sample(self.buffer, batch_size)
        states, actions, rewards, next_states, dones = zip(*batch)
        return states, actions, rewards, next_states, dones
    
    def __len__(self):
        return len(self.buffer)
  • deque: 是一个双端队列(double-ended queue),它允许我们在两端高效地添加和删除元素。这里使用 dequemaxlen 参数确保缓冲区的大小不会超过 capacity。当缓冲区达到最大容量时,最早添加的经验会被自动丢弃。

  • state: 当前状态。

  • action: 在当前状态下采取的动作。

  • reward: 采取动作后获得的奖励。

  • next_state: 采取动作后的下一个状态。

  • done: 标记当前回合是否结束(布尔值)。

  • batch_size: 指定要采样的经验数量。

  • random.sample: 从缓冲区中随机采样 batch_size 条经验。

  • zip(*batch): 将采样的经验解压为五个独立的列表,分别对应状态、动作、奖励、下一个状态和是否终止。

4.4 定义DQN代理

DQN代理负责与环境交互并更新网络:

class DQNAgent:
    def __init__(self, state_dim, action_dim):
        self.state_dim = state_dim
        self.action_di
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

橙色小博

一起在人工智能领域学习进步!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值