有限单元法重要知识点

本文详细阐述了有限元法在弹性力学问题求解中的应用,包括基本步骤、单元刚度矩阵与整体刚度矩阵的性质。讨论了单元类型、网格划分注意事项,以及大型有限元软件如ANSYS和ABAQUS的特性。此外,提到了形函数性质、位移模式的收敛条件,以及非线性问题的类型和解决方法。
摘要由CSDN通过智能技术生成

一. 有限元法求解弹性力学问题的基本步骤,为什么应力解答的程度低于位移解答精度?

(1) 步骤2弹性单元的离散化2选择位移函数3建立单元刚度方程4建立整体平衡方 程5,求解整体平衡方程

(2) 位移法求解,位移是直接解,应力是一个与位移导数相关的派生解,这就导致了应 力解答的精度低于位移解答精度。

二. 简述单元刚度矩阵和整体刚度矩阵的性质

单元刚度矩阵性质48

1单元刚度矩阵每一列元素表示一组平衡力系,对于平面问题,每列元素之和为零。

2. 单元刚度矩阵中对角线上的元素为正。

3单元刚度矩阵为对称矩阵 4单元刚度矩阵为奇异矩阵

整体刚度矩阵性质

1每一列元素表示一组平衡力系,対于平面问题,每列元素之和为零。

2. 单元刚度矩阵中对角线上的元素为正。

3单元刚度矩阵为对称矩阵

4单元刚度矩阵为奇异矩阵,排除整体刚度位移后为正定矩阵。

5整体刚度矩阵是带状矩阵

三、 简述你知道的单元类型,对同一类型的单元精度比较,给出一般规律。

三角形单元中,三结点的常应变单元•其单元内应力是常量,它是一种简单但精度低的单元:六结点的二次三角形单元精度高但不能适应曲线边界。而矩形单元,其精度虽比相应的三角 形单元高,但不易改变单元尺寸,以及不能适应曲线边界和非直角的直线边界。平面等参数 单元适应了曲线边界和非直角的直线边界。

四、 有限元网格划分的过程中应注意哪些问题?

1. 网格数目

网格数目的多少将影响计算结果的精度和计算规模的人小。一般来讲,网格数目增加,计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值