“ AI Coding 是一个快速演进的领域,我们需要了解它当前的局限性,为未来的各种可能性做好准备,可能一个任务今天无法完成但是在明天模型升级后就可以实现了。唯一的应对办法是刻意练习,刻意地用 LLM 完成一些日常的任务,感知模型能力的边界和变化,并且尝试用工程的手段去弥补模型的不足以投入使用”。
AI Coding 的发展与影响
📈 大语言模型的演进趋势
AI Coding 的核心发展趋势体现在 AI 自主性的飞速提升。从最初以代码补全、代码问答为主的 Copilot 形式(e.g GitHub Copilot)到目前以独立完成任务的 Agent 形式(e.g Devin)演进。
代码大模型的演进速度非常快,相较于去年同一时间的产品,如今的模型能力超乎预期。前沿模型在代码生成任务上提升显著,其成本和速度在持续优化,尤其是从 0 到 1 生成小型项目上的表现。总之,前沿模型在变得更强更小,这意味着更好的体验和更低的成本。
此外,大家普遍认为 2025 年是属于 Agent 应用的一年,大模型在这方面的能力达到了实现成熟应用的拐点并且其能力会持续加强,主要可以体现在以下四个方面:
▪️ 规划(Planning):制定计划、将计划拆分成子任务、为子任务设定目标、基于反馈对计划进行调整。
▪️ 记忆(Memory):记录在 Agent 执行过程中产生的历史思考、行动和环境观测。
▪️ 感知(Perception):接收来自环境的信息,可以是文本或多模态的形式。
▪️ 行动(Action):基于计划和 LLM 的决策,和环境进行交互并对环境造成状态的改变。对于行动而言一个重要的机制就是控制和使用外部工具。
🌟 AI Coding 带来的改变与影响
每一个技术革新的过程都会经历若干个阶段,我们现在正在跨越从早期市场到主流市场这个鸿沟。对于早期的采用者来说,他们看到了这项技术的巨大潜力并且为之兴奋,尽管不成熟或者有时候效果不佳,但是 AI Coding 的使用体验非常神奇。这个工具能猜到你的意图并给出对应的代码,并且在持续快速地提升,越来越稳定,完成更难的任务。
正因为 AI Coding 是一个快速演进的领域,我们需要了解它当前的局限性,为未来的各种可能性做好准备,可能一个任务今天无法完成但是在明天模型升级后就可以实现了。唯一的应对办法是刻意练习,刻意地用 LLM 完成一些日常的任务,感知模型能力的边界和变化,并且尝试用工程的手段去弥补模型能的不足以投入使用(比如用 RAG 去除幻觉)。一方面你会深化认知和技巧,另一方面一旦达到零界点你将是第一批的受益者。
</