tibble::column_to_rownames

title: "merge 合并"
output: html_document
date: "2024-03-08"

R Markdown

suppressMessages(library(TCGAbiolinks))
suppressMessages(library(SummarizedExperiment))
​
X1 <- assay(met)[1:3,1:3]
X1
##            TCGA-EP-A2KC-01A-11D-A20Z-05 TCGA-ES-A2HS-01A-11D-A17Z-05
## cg16619049                    0.7796626                    0.4656080
## cg18147296                    0.8179045                    0.7744908
## cg13938959                    0.6397997                    0.9317492
##            TCGA-ES-A2HS-11A-11D-A17Z-05
## cg16619049                    0.5465106
## cg18147296                    0.8456720
## cg13938959                    0.8302542
X2 <- assay(met)[2:4,4:6]
X2
##            TCGA-CC-5259-01A-31D-A20Z-05 TCGA-ED-A97K-01A-21D-A383-05
## cg18147296                    0.7253149                    0.8047118
## cg13938959                    0.4120948                    0.7887094
## cg12445832                    0.1848328                    0.7557783
##            TCGA-DD-A3A1-01A-11D-A20Z-05
## cg18147296                    0.8544879
## cg13938959                    0.8174317
## cg12445832                    0.1738895
ya <- merge(X1,X2,by="row.names")
ya#会发现合并之后多了一个row.names行名,怎么把他删除掉呢?
##    Row.names TCGA-EP-A2KC-01A-11D-A20Z-05 TCGA-ES-A2HS-01A-11D-A17Z-05
## 1 cg13938959                    0.6397997                    0.9317492
## 2 cg18147296                    0.8179045                    0.7744908
##   TCGA-ES-A2HS-11A-11D-A17Z-05 TCGA-CC-5259-01A-31D-A20Z-05
## 1                    0.8302542                    0.4120948
## 2                    0.8456720                    0.7253149
##   TCGA-ED-A97K-01A-21D-A383-05 TCGA-DD-A3A1-01A-11D-A20Z-05
## 1                    0.7887094                    0.8174317
## 2                    0.8047118                    0.8544879
#我的笨方法
gg <- colnames(ya)#对行名进行赋值
gg1 <- gg[-1]#删掉第一个row.names
​
rownames(ya) <- NULL
rownames(ya) <- ya[,1]
ya<- ya[-1]
colnames(ya) <- gg1#再次赋值行名
ya
##            TCGA-EP-A2KC-01A-11D-A20Z-05 TCGA-ES-A2HS-01A-11D-A17Z-05
## cg13938959                    0.6397997                    0.9317492
## cg18147296                    0.8179045                    0.7744908
##            TCGA-ES-A2HS-11A-11D-A17Z-05 TCGA-CC-5259-01A-31D-A20Z-05
## cg13938959                    0.8302542                    0.4120948
## cg18147296                    0.8456720                    0.7253149
##            TCGA-ED-A97K-01A-21D-A383-05 TCGA-DD-A3A1-01A-11D-A20Z-05
## cg13938959                    0.7887094                    0.8174317
## cg18147296                    0.8047118                    0.8544879
#小洁老师教的方法
ya <- merge(X1,X2,by="row.names")
tibble::column_to_rownames(ya, var = "Row.names")
##            TCGA-EP-A2KC-01A-11D-A20Z-05 TCGA-ES-A2HS-01A-11D-A17Z-05
## cg13938959                    0.6397997                    0.9317492
## cg18147296                    0.8179045                    0.7744908
##            TCGA-ES-A2HS-11A-11D-A17Z-05 TCGA-CC-5259-01A-31D-A20Z-05
## cg13938959                    0.8302542                    0.4120948
## cg18147296                    0.8456720                    0.7253149
##            TCGA-ED-A97K-01A-21D-A383-05 TCGA-DD-A3A1-01A-11D-A20Z-05
## cg13938959                    0.7887094                    0.8174317
## cg18147296                    0.8047118                    0.8544879

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see R Markdown.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

PCA_Plot_3=function (data,Annotation,VAR,Color) { # logcountdata row:genes,column: samples pca <- prcomp(data) pca_out<-as.data.frame(pca$x) df_out<- pca_out %>%tibble::rownames_to_column(var=VAR) %>% left_join(., Annotation) #df_out<- merge (pca_out,Annotation,by.x=0,by.y=0) # label_color<- factor(df_out[,group]) ggplot(df_out,aes_string(x="PC1",y="PC2")) +geom_point(aes_string(colour = Color)) } Deseq2_Deseq_function_2=function (Countdata,Coldata) { dds_fil <- DESeq2:: DESeqDataSetFromMatrix(countData =Countdata, colData = Coldata, design = ~Group) dds_fil_Deg<- DESeq2::DESeq(dds_fil) return(dds_fil_Deg) } pheatmap_singscore=function (pathways,data,Annotation) { Gene_select_anno= data[,colnames(data) %in% pathways] %>%t()%>%.[,rownames(Annotation)] # return(Gene_select_anno) # Anno_expression_data=Gene_select_anno[,c("SYMBOL",Group_select)] %>% as.data.frame() %>% distinct() %>% na.omit() # rownames(Anno_expression_data)=Anno_expression_data[,"SYMBOL"] # Annotation=group_anno["Gene_type"] # input= Anno_expression_data[,Group_select] # F2_pheatmap <- pheatmap::pheatmap(input, cellwigermline calling GATKdth = 10, cellheight = 12, scale = "row", # treeheight_row = 5, # show_rownames = T,show_colnames = T, # annotation_col= Annotation, # # annotation_row=Annotation, # annotation_legend=Label_def, # cluster_rows = T, cluster_cols = F,clustering_distance_rows = "euclidean") pheatmap::pheatmap(Gene_select_anno, cellwigermline=5, cellheight = 10,cellwidth = 10, scale = "row", treeheight_row = 5, show_rownames = T,show_colnames = F, annotation_col= Annotation, # annotation_row=Annotation, #annotation_legend=Label_def, cluster_rows = T, cluster_cols = F,clustering_distance_rows = "euclidean") } matrix.please<-function(x) { m<-as.matrix(x[,-1]) rownames(m)<-x[,1] m } 这是r语言的代码,告诉我每一条代码的作用和意义
07-13
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值