三角函数总结(高数预备知识、博主[亦可呀]原创文章的整理)

本文为CSDN博主「亦可呀」的原创文章的整理+从网上各个地方寻来的资料和自个儿的笔记,[亦可呀]的原创文章链接:https://blog.csdn.net/qq_61866637/article/details/127731697


一 、三角函数

1、任意角与弧度制

(1)任意角

一条射线绕着它的端点逆时针旋转而成的角叫正角,相反叫负角,没有旋转的叫零角。
在这里插入图片描述把射线OA围绕端点按不同方向旋转相同的量所形成的的两个角互为相反数。
在这里插入图片描述终边落在哪个象限,就叫第几象限角,落在x,y轴上称为轴线角。
在这里插入图片描述思考:
1.第几象限角能否反应角的大小?
不能, 比如第一象限角可以旋转若干圈回到第一象限

2.与42°角终边相同的角的集合如何表示

{ α | α=42° + 360°k, k ∈ Z}

注意:Z表示整数,包含正负

3.如何表示轴线角的集合

{ α |α=α + 90°k, k ∈ Z}


例题1: 已知角 α 在如图阴影表示的范围内(不包含边界), 那么角 α的集合是______
在这里插入图片描述
答案:
{ α | 45°+360°k< α <150°+360°k , k∈ Z}


例题2: 将35°角的终边按顺时针方向旋转60°所得到的角度为_____, 将35°角的终边按逆时针方向旋转一周后的角度为______。

答案:
{-25°+360°k, k ∈ \in ∈ Z}
{35+360°k, k ∈ \in ∈ Z}


例题4: 若 α是第一象限角, 则α/2 是第几象限___(一,三)___
解:
{α|360°K<α<90°+360°K,K∈Z}
{α/2 |180°K<α/2 <45°+180°K,K∈Z}


(2)弧度制

弧度制: 把弧度作为单位来度量角的单位制叫做弧度制, 它的单位是弧度, 单位符号是rad

把长度等于半径长的弧所对的圆心角叫做1弧度的角
正角的弧度数为正数, 负角的弧度数为负数, 零角的弧度数为0
在这里插入图片描述

L为1弧度

(3)弧度制与角度值的换算

360°=2π rad
180°=π rad
90°=π/2 rad
1弧度为 180°/π ≈ 57.3°
弧度的系数*180°=角度(以π/2的转换为例,π/2的系数为1/2)
eg: 1 2 ∗ 180 ° = 90 ° \frac{1}{2}*180°=90° 21180°=90°

(4)弧长与扇形面积公式

弧长公式: L= α R

请添加图片描述
扇形面积公式:
S = 1 2 α R 2 = 1 2 L R (由弧长公式代入得到) S=\frac{1}{2}\alpha R²=\frac{1}{2}LR\text{(由弧长公式代入得到)} S=21αR2=21LR(由弧长公式代入得到)
推导一:
我们知道圆形的面积公式为πR²
可以看做圆形是由扇形的若干倍组成
S = π R 2 ∗ α 2 π S=\pi R²*\frac{\alpha}{2\pi} S=πR22πα

整理得:
S = 1 2 α R 2 S=\frac{1}{2}\alpha R² S=21αR2

代入L= αR得
S = 1 2 L R S=\frac{1}{2}LR S=21LR

推导二:(微积分思想)
可以把扇形看作是由非常多个小三角形组成

请添加图片描述
三角形面积公式=1/2 * 底 * 高
由于三角形足够小,底几乎可以看作直线
也就可以把扇形当作三角形
S = 1 2 L R S=\frac{1}{2}LR S=21LR


例题5: 用角度制表示第一象限角的范围______。

答案:
{ 2 k π , π 2 + k π } ( k ∈ Z ) \left\{ 2k\pi \text{,}\frac{\pi}{2}+k\pi \right\} \text{(}k∈Z\text{)} {22π+}kZ


例题6: 在半径为10的圆中, 240°的圆心角所对弧长为____。

答案:L=αR=40π/3


例题7: 把下面的弧度化成角度或角度化成弧度。
(1)-450° (-450°/180°)*π= - 5π/2(不知道这里可不可以写成 - π/2)
(2) π/10 ( 1/10)*180°=18°
(3) -4π/3 ( -4/3)*180°=- 240°
(4)112°30’ (112°30’ /180°)*π= 5/8π

角度制中,1°=60′


例题8: 用弧度制表示阴影部分的集合(不包括边界)
在这里插入图片描述答案:
(1){-6/π+2kπ,5π/12+2kπ}(k∈Z)
(2){-3π/4+2kπ,3π/4+2kπ}(k∈Z)
(3){π/6+kπ,π/2+kπ}(k∈Z)


例题9: 已知扇形AOB的圆心角为120°, 半径长为6, 求弓形ACB的面积。
在这里插入图片描述
解:扇形的面积= S = 1 2 α R 2 = 1 2 ∗ 2 π 3 ∗ 36 = 12 π S=\frac{1}{2}\alpha R²=\frac{1}{2}*\frac{2\pi}{3}*36=12\pi S=21αR2=2132π36=12π

三角形AOB的面积= 6 3 ∗ 3 ∗ 1 2 = 9 3 6\sqrt{3}*3*\frac{1}{2}=9\sqrt{3} 63 321=93

弓形ACB的面积=扇形的面积 - 三角形AOB的面积 =
12 π − 9 3 12\pi -9\sqrt{3} 12π93

(5)小结

请添加图片描述

2、三角函数的概念

(1)概念与重要公式

三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
在这里插入图片描述这里有两个重要公式:
s i n α 2 + c o s α 2 = 1 tan ⁡ x = sin ⁡ x cos ⁡ x sin\alpha ²+cos\alpha ²=1 \\ \tan x=\frac{\sin x}{\cos x} sinα2+cosα2=1tanx=cosxsinx
由上面两个公式可以推导出cosα与tanα的关系式。
将sinα=tanαcosα代入sin²α+cos²α=1
tan²αcos²α+cos²α=1
cos²α(tan²α+1)=1
由此得出:
cos ⁡ 2 α = 1 tan ⁡ 2 α + 1 \cos ²\alpha =\frac{1}{\tan ²\alpha +1} cos2α=tan2α+11


正弦函数:y=sinx ; x∈R
余弦函数:y=cosx ; x∈R
正切函数:y=tanx ; {x丨x≠(π/2)+kπ, k∈Z}


(2)特殊三角函数值:

在这里插入图片描述

提示:这图片是我在网上找的,侵删


例题1: 求5π/3​的正弦, 余弦, 正切值
正弦: s i n ( 5 π 3 ) = s i n ( − π 3 ​ ) = − 3 2 sin(\frac{5\pi}{3})=sin(-\frac{\pi}{3}​)=-\frac{\sqrt{3}}{2} sin(35π)=sin(3π)=23
余弦:
cos ⁡ ( 5 π 3 ) = cos ⁡ ( − π 3 ​ ) = 1 2 \cos\mathrm{(}\frac{5\pi}{3})=\cos\mathrm{(}-\frac{\pi}{3}​)=\frac{1}{2} cos(35π)=cos(3π)=21
正切:
tan ⁡ ( 5 π 3 ) = tan ⁡ ( − π 3 ​ ) = − 3 \tan\mathrm{(}\frac{5\pi}{3})=\tan\mathrm{(}-\frac{\pi}{3}​)=-\sqrt{3} tan(35π)=tan(3π)=3


(3)象限角的三角函数符号

请添加图片描述
sinx、cosx、tanx在所在的象限里为正——sinx,cosx,tanx(散阔弹)在第一象限里都为正,sinx在第二象限为正,以此类推——一全二散三阔四弹。


例题6: sinα=1/3,并且α是第二象限角,求cosα,tanα的值。
答案:
c o s α = − 2 2 3 ; tan ⁡ α = − 2 4 cos\alpha =-\frac{2\sqrt{2}}{3};\tan \alpha =-\frac{\sqrt{2}}{4} cosα=322 tanα=42


例题7: 已知sinα=-3/5,求cosα,tanα的值。
因为没有指定α的象限,而sinα又为负,那么就要考虑三、四象限。
在第三象限:
cos ⁡ α = − 4 5  ; tan ⁡ α = 3 4 \cos \alpha =-\frac{4}{5}\text{ ;}\\\tan \alpha =\frac{3}{4} cosα=54 tanα=43
在第四象限:
cos ⁡ α = 4 5 ; tan ⁡ α = − 3 4 \cos \alpha =\frac{4}{5}\text{;}\\\tan \alpha =-\frac{3}{4} cosα=54tanα=43


(4)小结

请添加图片描述

注意:我画图时记错了,cosx在第四象限才是正的,tanx在第三象限才是正的。这两需要交换下位置。

3、诱导公式

(这部分听的是B站up主 神奇小猪,小猪老师的课。u1s1对长得帅又温柔的学霸真的毫无抵抗力)
诱导公式分为三部分——

诱导公式一

在这里插入图片描述上面三角函数的概念中我们已经知道,sinx看的是y的值,cosx看的是x的值,tanx看的是sinx除以cosx的值,我们将α看作是锐角,如上图,α与-α互为相反数,而x又看的是y的值,所以sin(-α)=-sinα。
也可以这么理解,sinα只在一二象限才为正,而-α在第四象限,故为负。
cosα在第四象限是正数,所以cos(-α)=cosα。tanα同理。

sin ⁡ ( − α ) = − sin ⁡ α cos ⁡ ( − α ) = cos ⁡ α tan ⁡ ( − α ) = − tan ⁡ α \sin \left( -\alpha \right) =-\sin \alpha \\ \cos \left( -\alpha \right) =\cos \alpha \\ \tan \left( -\alpha \right) =-\tan \alpha sin(α)=sinαcos(α)=cosαtan(α)=tanα

此外我们发现了一个问题:sinx,tanx是奇函数,cosx是偶函数。


例题2: sin(-315°) = _____
答案:
2 2 \frac{\sqrt{2}}{2} 22


诱导公式二

在这里插入图片描述

诱导公式三

在这里插入图片描述

诱导公式的技巧与方法

诱导公式太多了咋办捏?
1、把所有的α看作是锐角(注意α可以是钝角也可以是负角,把α看作锐角只是单纯的方便,而且对公式不会有任何影响)。
2、万能口诀:奇变偶不变,符号看象限。
首先来解释一下这口诀是什么意思。
sin ⁡ / cos ⁡ / tan ⁡ ( k π 2 ± α ) \sin /\cos /\tan \left( \frac{k\pi}{2}\pm \alpha \right) sin/cos/tan(2±α)
我们看的奇偶,也就是上面这个公式的k,看k是奇数还是偶数。
举个例子: sin ⁡ ( π − α ) = sin ⁡ α \sin \left(π -\alpha \right) =\sin \alpha sin(πα)=sinα
π是π/2的几倍捏?2倍。那k就是偶数了捏,k是偶数,那sinα就是sinα不会变。那k是奇数咋办呢?看下面。
sin ⁡ ( π 2 − α ) = cos ⁡ α \sin \left( \frac{\pi}{2}-\alpha \right) =\cos \alpha sin(2πα)=cosα

k=1,sinα就会变成cosα。反之,cosα也会变成sinα。tanα会变成cotα(cotα是tanα的倒数)。
符号看象限的解释可以再看看象限角的三角函数符号那一小节,一全二sin三cos四tan。sin(π-α)的k是偶数,且终边在第二象限,故结果为sinα。
例题:
在这里插入图片描述在这里插入图片描述例题1: 求值tan(-2040°)

t a n ( − 2040 ° ) = t a n ( 120 ° − 12 π ) = t a n 120 ° = t a n ( π − 60 ° ) = t a n 60 ° = − 3 tan(-2040\degree) \\ =tan(120\degree-12\pi ) \\ =tan120\degree \\ =tan(\pi -60\degree) \\ =tan60\degree \\ =-\sqrt{3} tan(2040°)=tan(120°12π)=tan120°=tan(π60°)=tan60°=3

在这里插入图片描述
例题三:
在这里插入图片描述

小结

1、把α看作锐角
2、奇变偶不变,符号看象限

4、三角函数图像

1、正弦函数图像(奇函数)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述下面这道题是一数哥讲的,好厉害啊,头一次知道这种函数的图像还可以叠加……(悄悄震惊一下,可以忽略俺~)当初高考的时候咋就没看见一哥的视频呢……
在这里插入图片描述

在这里插入图片描述

2、余弦函数图像(偶函数)

在这里插入图片描述
在这里插入图片描述例题
在这里插入图片描述

3、正切函数图像(奇函数)

在这里插入图片描述
(1)由诱导公式tan(x+π)=tanx,x∈R,且x≠π/2+kπ,k∈z可知tanx的周期为π。
(2)又由tan(-x)=-tanx,x∈R,且x≠π/2+kπ,k∈z可知tanx为奇函数。
(3)由图像可得,正切函数在

4、函数的周期性

一般地, 对于函数f(x), 如果存在一个非零常数T, 使得当x取定义域内的每一个值, 都有f(x+T) = f(x)
那么函数f(x)就叫做周期函数, 非零常数T叫做这个函数的周期

如果在周期函数f(x)的所有周期函数中存在一个最小的正数, 那么这个最小正数就叫做f(x)的最小正周期
比如: f(x) = f(x+2π) + f(x+4π)…
最小正周期为2π

例3: 若函数f(x)满足f(x-2) = f(x+3), 且f(2)=5, 求f(-3)
当x为-1时, f(-3) = f(2) = 5

5、三角函数的周期性

正弦函数是周期函数, 2kπ (k ∈ \in ∈z, 且k≠0)都是它的周期, 最小正周期是2π, 类似地, 余弦函数的周期最小正周期也是2π。
在这里插入图片描述由图可见, y= sin2x相当于y= sinx压缩了, 周期变为π
在这里插入图片描述由图可见, y= sin1/2x相当于y= sinx拉伸了, 周期变为4π
据上面的推测——我们将函数规范化:y=Asin(wx+φ)
由上可得三角函数最小正周期为
T = 2 π ∣ w ∣ T=\frac{2\pi}{|w|} T=w2π

6、三角函数的奇偶性

记住口诀:把奇函数当成负数,奇加减偶除外
奇+奇=奇,奇-奇=奇
奇×奇=偶,奇/奇=偶
偶+偶=偶,偶-偶=偶
偶×偶=偶,偶/偶=偶
奇+偶,无法直接判断
奇-偶,无法直接判断
奇×偶=奇
奇÷偶=奇
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

7、小结

在这里插入图片描述

5、三角恒等变换公式

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

知识架构

请添加图片描述

  • 3
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值