物理化学理论基础(一)

本文详细阐述了第一性原理计算方法,特别是通过薛定谔方程和密度泛函理论(DFT)来解决多粒子系统的电子结构问题。文章介绍了波函数、原子偶极子、原子间势及多原子系统模拟的原理,并提到了图神经网络在分子模拟中的应用,以及DPA-1模型如何通过预训练减少下游任务的额外努力。
摘要由CSDN通过智能技术生成

一、第一性原理计算方法的基本思路

通过求解多粒子系统的薛定谔方程来描述体系的状态波函数和相应的能量本征值。下面将详细解释这个过程:

  1. 构建体系的哈密顿量: 首先需要构建体系的哈密顿量,即描述多粒子系统动力学行为的算符。哈密顿量包括了原子核和电子之间的相互作用以及粒子间的动能、势能等项。

  2. 求解薛定谔方程: 利用构建的哈密顿量,我们可以得到薛定谔方程:
    H ψ = E ψ H\psi=E\psi Hψ=Eψ
    ,其中 H 是体系的哈密顿量, ψ \psi ψ 是描述体系的波函数,E 是体系的能量本征值。

  3. 数值求解薛定谔方程: 对于实际的多粒子系统,通常无法通过解析方法得到精确解。因此,需要使用数值计算方法,如密度泛函理论(DFT)等,对薛定谔方程进行近似求解。

  4. 获得状态波函数和能量本征值: 通过数值计算,可以获得多粒子系统的状态波函数 Ψ 和对应的能量本征值 E。波函数描述了体系的量子态,而能量本征值则表示了该态的能量。

  5. 推导相关性质: 基于获得的波函数和能量本征值,可以进一步计算体系的相关性质,如分子结构、电荷分布、键合性质、反应活性等。这些性质提供了关于体系结构和行为的重要信息。

通过以上步骤,就可以利用第一性原理计算方法求解多粒子系统的薛定谔方程,获取体系的状态波函数和能量本征值,并进一步推导出相关性质,为研究原子和分子体系提供了重要的理论支持和预测能力。

二、密度泛函理论(DFT)

是一种常用的近似求解多体量子系统薛定谔方程的方法,特别适用于固体和分子系统的电子结构计算。下面将详细说明如何通过DFT对薛定谔方程进行近似求解,并且给出一些具体的概念和计算公式。

DFT 的基本原理

在密度泛函理论中,关注的重点是电子的电荷密度ρ®,而不是每个单个电子的波函数。基本思想是将多体问题转化为一个更易处理的单体问题,通过有效的交换-相关能泛函来近似描述体系的电子相关性质。

关键概念和计算步骤

  1. 交换-相关能泛函选择: DFT 的核心是选择适当的交换-相关能泛函 E x c [ ρ ] E_{xc}[\rho] Exc[ρ]。常用的包括局域密度近似 (LDA)、广义梯度近似 (GGA)、杂化泛函等。这些泛函根据电子密度给出电子间的交换和相关能。

  2. Kohn-Sham 方程: 在DFT中,体系的基态电子结构可通过求解Kohn-Sham方程来近似描述。Kohn-Sham方程如下所示:
    ( − ℏ 2 2 m ∇ 2 + V e x t ( r ) + V H ( r ) + V x c ( r ) ) ψ i ( r ) = ϵ i ψ i ( r ) \left(-\frac{\hbar^2}{2m}\nabla^2+V_{ext}(\mathbf{r})+V_H(\mathbf{r})+V_{xc}(\mathbf{r})\right)\psi_i(\mathbf{r})=\epsilon_i\psi_i(\mathbf{r}) (2m22+Vext(r)+VH(r)+Vxc(r))ψi(r)=ϵiψi(r)
    其中, ψ i ( r ) \psi_i(r) ψi(r)是Kohn-Sham波函数, ϵ i \epsilon_i ϵi是对应的能量本征值, V e x t ( r ) V_{ext}(r) Vext(r)是外势能, V H ( r ) V_H(r) VH(r)是Hartree势, V x c ( r ) V_{xc}(r) Vxc(r)是交换-相关势。

  3. 自洽场迭代: 通过迭代求解Kohn-Sham方程,计算得到电子的波函数和能量,同时根据这些波函数计算电子密度 ρ ( r ) ρ(r) ρ(r)

  4. 总能量计算: 最终,体系的总能量可以通过对电子的动能、外势能和交换-相关能泛函进行求和得到:
    E [ ρ ] = T [ ρ ] + ∫ V e x t ( r ) ρ ( r ) d r + ∫ V H ( r ) ρ ( r ) d r + E x c [ ρ ] E[\rho]=T[\rho]+\int V_{ext}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r}+\int V_{H}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r}+E_{xc}[\rho] E[ρ]=T[ρ]+Vext(r)ρ(r)dr+VH(r)ρ(r)dr+Exc[ρ]

具体例子和结果

举例来说,假设我们要计算氢分子(H2)的电子结构,可以通过DFT方法求解Kohn-Sham方程。对于简单体系,常见的软件如VASP、Quantum Espresso等提供了计算流程。
通过DFT计算得到的结果包括分子的几何构型、键长、能量和电荷密度分布等。例如,可以计算H2分子的键长、电子云形状以及其对应的总能量。
总之,密度泛函理论是一种强大的工具,能够在理论上和计算上揭示多体量子系统的基态性质,为材料科学和化学领域提供了重要的理论支持和预测能力。

三、波函数

波函数的物理意义
量子力学的一个核心观点是,一个粒子的位置和动量不能同时准确测量。波函数是一个描述粒子概率分布的函数,它包含了所有关于该粒子的信息。通过波函数,我们可以计算出粒子在某个位置出现的概率,或者粒子具有某个动量的概率。因此,波函数是量子力学中一个描述粒子状态的基本工具。

波函数的数学描述
波函数通常用希腊字母ψ表示,并且是一个复数函数。在一维空间中,波函数可以表示为ψ(x),在三维空间中则表示为ψ(x,y,z)。波函数的模平方表示粒子在某个位置出现的概率密度。

薛定谔方程
波函数的演化遵循薛定谔方程,这是一个描述量子系统时间演化的偏微分方程。薛定谔方程的形式如下:
iħ∂ψ/∂t = Hψ
其中,i 是虚数单位,ħ 是约化普朗克常数,H 是哈密顿算符,表示系统的总能量。

波函数的性质
波函数具有三个重要性质:正交性、完备性和归一性。

四、原子偶极子

原子偶极子是描述原子中正负电荷分布不对称性的物理量,它可以用来描述原子与外部电场的相互作用。原子偶极子通常定义为原子中正负电荷分布之间的距离乘以电荷差,表示了原子在电场下的极化能力。

原子偶极子p 可以由以下公式计算得出:
p = q ⋅ d \boldsymbol{p} = q \cdot \boldsymbol{d} p=qd

其中, q 是原子的电荷,d 是正负电荷中心之间的位移矢量。

而原子受到外部电场 E 作用时,会受到力的影响,这个力称为偶极力(force due to dipole)。偶极力 F 可以通过以下公式计算:
F = ( p ⋅ ∇ ) E \boldsymbol{F} = (\boldsymbol{p} \cdot \nabla) \boldsymbol{E} F=(p)E
其中,∇ 是梯度算子。偶极力的方向与电场方向一致,并且与偶极子和电场的关系密切相关。

原子偶极子和偶极力在原子和分子的光谱学、电荷转移、介电性等领域具有重要应用,能够帮助我们理解和预测分子在外部电场下的行为以及其与其他分子或原子的相互作用。

五、原子间势

原子间势是分子动力学模拟中的重要概念,用于描述原子之间相互作用的力场。其中,静电相互作用由库伦定律描述,表示为:
V Coulomb = k ⋅ q 1 ⋅ q 2 r V_{\text{Coulomb}} = k \cdot \frac{q_1 \cdot q_2}{r} VCoulomb=krq1q2

其中,( q_1 ) 和 ( q_2 ) 是原子之间的电荷,( r ) 是它们之间的距离,( k ) 是一个常数。

范德华相互作用则更为复杂,通常使用Lennard-Jones势函数描述,表示为:
V LJ ( r ) = 4 ϵ [ ( σ r ) 12 − ( σ r ) 6 ] V_{\text{LJ}}(r) = 4 \epsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^6 \right] VLJ(r)=4ϵ[(rσ)12(rσ)6]

其中,( ϵ \epsilon ϵ ) 是势能的深度参数,( σ \sigma σ ) 是两个原子的有效直径,( r r r) 是它们之间的距离。

实际应用中,原子间相互作用势可能还包括其他修正项,以更准确地描述系统中的相互作用。例如,对于离子化合物,静电相互作用势可能还考虑库伦吸引力和斥力。
综上所述,原子间势的计算涉及静电相互作用和范德华相互作用的描述,其中使用库伦定律和Lennard-Jones势函数进行建模。

原子间势将原子的势能近似为它们坐标的函数。它们的主要应用是多原子系统的有效模拟。

六、多原子系统的模拟

多原子系统的模拟通常采用分子动力学(molecular dynamics, MD)方法。在这个过程中,我们首先需要确定系统的初始状态,包括原子的位置、速度和相互作用势能。然后,通过数值积分求解牛顿运动方程,模拟系统中每个原子的运动轨迹。具体而言,模拟过程如下:

  1. 初始化系统状态: 首先,确定系统的初始结构,包括原子的位置和速度。通常采用实验数据或者其他计算方法得到的结构作为初始结构。

  2. 确定势能函数: 选择适当的原子间势能函数来描述原子之间的相互作用。这可以是经典的势函数,如Lennard-Jones势函数或者其他经验势函数,也可以是基于机器学习的原子间势(但生成用于拟合这些模型的原子配置数据库是一个费力的过程,需要大量的计算和人力)。

  3. 求解牛顿运动方程: 通过数值积分求解牛顿运动方程,模拟系统中每个原子的运动轨迹。这可以通过常见的数值积分算法来实现,如Verlet算法或者Runge-Kutta算法。

  4. 模拟时间步长: 将时间分割为小的时间步长,每个时间步长内更新原子的位置和速度。通常采用适当的时间步长来保证模拟的稳定性和准确性。

模拟过程: 在每个时间步长内,根据原子间的相互作用势能和牛顿运动方程,更新原子的位置和速度。重复这个过程直到达到所需的模拟时间或者系统达到平衡状态。

  1. 分析结果: 在模拟结束后,对模拟得到的原子轨迹和系统性质进行分析,如原子的平均位置、速度分布、动力学性质等。这些分析可以帮助我们理解系统的行为和性质。

综上所述,多原子系统的模拟通过求解牛顿运动方程和适当选择原子间势能函数来实现,可以用来研究材料的性质和行为,如弹性特性、缺陷行为、相变等。

def molecular_dynamics_simulation(initial_positions, initial_velocities, potential_function, time_steps):
    """
    Perform molecular dynamics simulation for a multi-atomic system.

    Args:
    initial_positions (list): Initial positions of atoms.
    initial_velocities (list): Initial velocities of atoms.
    potential_function (function): Function to calculate potential energy between atoms.
    time_steps (int): Number of time steps for simulation.

    Returns:
    final_positions (list): Final positions of atoms after simulation.
    final_velocities (list): Final velocities of atoms after simulation.
    """
    positions = initial_positions.copy()
    velocities = initial_velocities.copy()

    for _ in range(time_steps):
        forces = [0] * len(positions)
        for i in range(len(positions)):
            for j in range(i+1, len(positions)):
                # Calculate force between atom i and atom j
                r_ij = positions[j] - positions[i]  # vector between atoms i and j
                force_ij = calculate_force(r_ij, potential_function)  # 用初始函数计算力
                forces[i] += force_ij
                forces[j] -= force_ij

        # Update positions and velocities based on forces
        for i in range(len(positions)):
            positions[i] += velocities[i] * time_step
            velocities[i] += forces[i] * time_step

    return positions, velocities

# Example usage:
initial_positions = [0, 0, 0, 1, 1, 1]  # example initial positions
initial_velocities = [0.1, 0.2, 0.3, -0.1, -0.2, -0.3]  # example initial velocities
time_steps = 1000  # number of time steps for simulation
final_positions, final_velocities = molecular_dynamics_simulation(initial_positions, initial_velocities, potential_function, time_steps)
print("Final positions:", final_positions)
print("Final velocities:", final_velocities)

七、图神经网络

图神经网络(GNN)最简单全面原理与代码实现! - 知乎 (zhihu.com)

八、DPA-1

DPA:1基于注意的分子模拟深度电位模型的预训练

1. DPA-1在预训练后,可以显著减少下游任务的额外努力。

在这个问题中,下游任务 (downstream task) 是指在使用 DPA-1 模型进行预训练 (pre-training) 后,进一步 fine-tuning 以适应特定应用的过程。例如,在自然语言处理 (NLP) 中,下游任务可以是文本分类、问答系统等。在语音识别中,下游任务可以是语音转文本或语音翻译等。

DPA-1 模型在预训练阶段学习到通用的原子表示 (atomic representation),因此在进行下游任务时,只需要对模型进行 fine-tuning 即可,而无需从头开始训练。这可以显著减少下游任务的额外努力 (additional efforts),从而提高模型的训练效率。

具体来说,DPA-1 模型在预训练阶段学习到了原子之间的相互作用 (interactions),因此在进行下游任务时,只需要微调模型以适应特定任务的特征,而无需从头开始学习原子表示。这可以有效地减少下游任务的训练时间和数据需求,从而提高模型的性能。

DPA-1 模型的减少额外努力 (reducing additional efforts) 的原理在于,它可以利用大规模数据进行预训练,从而学习到通用的原子表示,这些表示可以应用于各种下游任务。这种预训练方法可以有效地避免下游任务中的数据 短缺 问题,从而提高模型的性能。

因此,DPA-1 模型可以显著减少下游任务的额外努力,这是因为它在预训练阶段学习到了通用的原子表示,可以直接应用于下游任务,而无需从头开始训练。这种预训练方法可以有效地提高模型的训练效率和性能,同时减少下游任务的数据需求和训练时间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值