2.10 几何优化和从头算分子动力学

在玻恩——奥本海默近似下,原子核由经典力学描述,电子根据与每个原子构型相关的基态波函数从属于原子核。总能量E({RI})提供了原子间势能的第一原理描述。
几何优化(或结构优化)问题旨在寻找势能面E({RI})上的(全局或局部)极小值,相应的极小值{R∫I}是(全局或局部)稳定构型。大多数自然存在的分子和固体都处于或接近这样的极小值。
定义第i个原子核的原子力
F I ( { R I } ) = − ∂ E ( { R I } ) ∂ R I ; F_I(\{R_I\})=-\frac{\partial E(\{R_I\})}{\partial R_I}; FI({RI})=RIE({RI});

那么,确定极小值的一个必要条件是,对于所有原子,原子力 F I F_I FI都应该为零。
E t o t = ∑ I = 1 M M I R ˙ I 2 2 + E ( { R I } I = 1 M ) , E_{\mathrm{tot}}=\sum_{I=1}^M\frac{M_I\dot{\boldsymbol{R}}_I^2}2+E(\{\boldsymbol{R}_I\}_{I=1}^M), Etot=I=1M2MIR˙I2+E({RI}I=1M),

其中MI是第i个原子核的质量。
原子核的动力学性质可以用牛顿方程来研究
M I R ¨ I ( t ) = − ∂ E ∂ R I ( { R I ( t ) } ) = F I ( { R I ( t ) } ) . M_I\ddot{\boldsymbol{R}}_I(t)=-\frac{\partial E}{\partial\boldsymbol{R}_I}(\{\boldsymbol{R}_I(t)\})=\boldsymbol{F}_I(\{\boldsymbol{R}_I(t)\}). MIR¨I(t)=RIE({RI(t)})=FI({RI(t)}).

这被称为从头算分子动力学(AIMD)。几何优化和分子动力学消除了构建经验原子间势的需要,并使化学和材料科学中静态和动态性质研究的广泛应用成为可能。

在几何优化和AIMD中,关键因素是评估原子力。在三维空间中,这种导数信息正式需要3M独立电子结构计算,这将是极其昂贵的。幸运的是,赫尔曼——费曼定理允许我们评估原子力,与单个电子结构计算相比,几乎没有增加成本。

原子力的评估

为了引入赫尔曼——费曼定理 ,让我们首先考虑一个参数相关的哈密顿量H(λ)。对于每个给定的λ,我们假设基态是非简并的。它的特征值ε(λ)和本征函数 ψ ( r ; λ ) \psi(r;λ) ψ(r;λ)可以计算为
H ( λ ) ψ ( λ ) = ε ( λ ) ψ ( λ ) (2.10.4) H(\lambda)\psi(\lambda)=\varepsilon(\lambda)\psi(\lambda)\tag{2.10.4} H(λ)ψ(λ)=ε(λ)ψ(λ)(2.10.4)
特征值对λ的导数是
d ε ( λ ) d λ = d d λ ⟨ ψ ( λ ) ∣ H ( λ ) ∣ ψ ( λ ) ⟩ = ⟨ ψ ( λ ) ∣ d H ( λ ) d λ ∣ ψ ( λ ) ⟩ + ε ( λ ) d d λ ⟨ ψ ( λ ) ∣ ψ ( λ ) ⟩ = ⟨ ψ ( λ ) ∣ d H ( λ ) d λ ∣ ψ ( λ ) ⟩ . \begin{aligned} \frac{\mathrm{d}\varepsilon(\lambda)}{\mathrm{d}\lambda}& =\frac{\mathrm{d}}{\mathrm{d}\lambda}\langle\psi(\lambda)|H(\lambda)|\psi(\lambda)\rangle \\ &=\langle\psi(\lambda)|\frac{\mathrm{d}H(\lambda)}{\mathrm{d}\lambda}|\psi(\lambda)\rangle+\varepsilon(\lambda)\frac{\mathrm{d}}{\mathrm{d}\lambda}\langle\psi(\lambda)|\psi(\lambda)\rangle \\ &=\langle\psi(\lambda)|\frac{\mathrm{d}H(\lambda)}{\mathrm{d}\lambda}|\psi(\lambda)\rangle. \end{aligned} dλdε(λ)=dλdψ(λ)H(λ)ψ(λ)⟩=ψ(λ)dλdH(λ)ψ(λ)⟩+ε(λ)dλdψ(λ)ψ(λ)⟩=ψ(λ)dλdH(λ)ψ(λ)⟩.
这里我们对所有λ使用了归一化条件<φ(λ)|φ(λ)>=1。因此,赫尔曼——费曼定理表明,特征值相对于外部参数扰动的一阶导数简单地由哈密顿量相对于λ的变化给出
赫尔曼——费曼定理的另一个观点可以从变分原理中理解
ε ( λ ) = inf ⁡ ∣ ψ ) ≠ ∣ 0 ⟩ E [ ψ , λ ] : = inf ⁡ ∣ ψ ⟩ ≠ ∣ 0 ⟩ ⟨ ψ ∣ H ( λ ) ∣ ψ ⟩ ⟨ ψ ∣ ψ ⟩ . \varepsilon(\lambda)=\inf_{|\psi)\neq|0\rangle}E[\psi,\lambda]:=\inf_{|\psi\rangle\neq|0\rangle}\frac{\langle\psi|H(\lambda)|\psi\rangle}{\langle\psi|\psi\rangle}. ε(λ)=ψ)=∣0infE[ψ,λ]:=ψ=∣0infψψψH(λ)ψ.
因此,
d ε ( λ ) d λ = ∂ E [ ψ , λ ] ∂ λ ∣ ψ = ψ ( λ ) + ∫ δ E [ ψ , λ ] δ ψ ( r ) ∣ ψ = ψ ( λ ) ∂ ψ ( r ; λ ) ∂ λ   d r = ⟨ ψ ( λ ) ∣ d H ( λ ) d λ ∣ ψ ( λ ) ⟩ . \frac{\mathrm{d}\varepsilon(\lambda)}{\mathrm{d}\lambda}=\left.\frac{\partial E[\psi,\lambda]}{\partial\lambda}\right|_{\psi=\psi(\lambda)}+\int\left.\frac{\delta E[\psi,\lambda]}{\delta\psi(r)}\right|_{\psi=\psi(\lambda)}\frac{\partial\psi(r;\lambda)}{\partial\lambda}\mathrm{~d}r=\langle\psi(\lambda)|\frac{\mathrm{d}H(\lambda)}{\mathrm{d}\lambda}|\psi(\lambda)\rangle. dλdε(λ)=λE[ψ,λ] ψ=ψ(λ)+δψ(r)δE[ψ,λ] ψ=ψ(λ)λψ(r;λ) dr=ψ(λ)dλdH(λ)ψ(λ)⟩.
请注意,虽然导数 ∂ ψ ( r ; λ ) ∂ λ \frac{\partial\psi(r;\lambda)}{\partial\lambda} λψ(r;λ)一般不会消失,但由于欧拉——拉格朗日方程,它对 d ε ( λ ) d λ \frac{\mathrm{d}\varepsilon(\lambda)}{\mathrm{d}\lambda} dλdε(λ)没有贡献

现在,对于Kohn-Sham DFT中的总能量,只有外部势Vext和离子——离子相互作用EII明确依赖于原子构型{RI}。此外,外部势一般可以分解为每个原子的贡献,如
V e x t ( r ; { R I } ) = ∑ I V e x t I ( r − R I ) . V_\mathrm{ext}(r;\{R_I\})=\sum_IV_\mathrm{ext}^I(\boldsymbol{r}-\boldsymbol{R}_I). Vext(r;{RI})=IVextI(rRI).
然后,应用赫尔曼——费曼定理,我们发现
F I = − ∂ E ( { R I } ) ∂ R I = − ∫ ρ ( r ) ∂ V e x t I ( r − R I ) ∂ R I   d r − ∂ E I I ( { R I } ) ∂ R I . \boldsymbol{F}_I=-\frac{\partial E(\{\boldsymbol{R}_I\})}{\partial\boldsymbol{R}_I}=-\int\rho(\boldsymbol{r})\frac{\partial V_\mathrm{ext}^I(\boldsymbol{r}-\boldsymbol{R}_I)}{\partial\boldsymbol{R}_I}\mathrm{~d}\boldsymbol{r}-\frac{\partial E_\mathrm{II}(\{\boldsymbol{R}_I\})}{\partial\boldsymbol{R}_I}. FI=RIE({RI})=ρ(r)RIVextI(rRI) drRIEII({RI}).

Car-Parrinello分子动力学(CPMD)

在AIMD中,电子结构问题必须完全自洽地解决,以便达到每个原子构型的基态。因此,这种类型的AIMD也被称为玻恩——奥本海默分子动力学(BOMD)。很长一段时间,尽管BOMD有明显的潜力,但它被认为过于昂贵。AIMD是由开创性的Car-Parrinello分子动力学(CPMD)[14]实现的,它引入了一个扩展的拉格朗日函数,包括原子核和电子的自由度:
L c p ( { R l } , { R ˙ l } , { ψ i } , { ψ ˙ i } ) = ∑ I M I R ˙ I 2 + ∑ i μ 2 ∫ ψ ˙ i ∗ ( r ) ψ ˙ i ( r ) d ⁡ r − E ( { ψ i } ; { R I } ) . (2.10.13) \begin{aligned}\mathcal{L}_{\mathrm{cp}}(\{R_l\},\{\dot{R}_l\},\{\psi_i\},\{\dot{\psi}_i\})\\&=\sum_I\frac{M_I\dot{R}_I}2+\sum_i\frac\mu2\int\dot{\psi}_i^*(\boldsymbol{r})\dot{\psi}_i(\boldsymbol{r})\operatorname{d}\boldsymbol{r}-E(\{\psi_i\};\{\boldsymbol{R}_I\}).\end{aligned}\tag{2.10.13} Lcp({Rl},{R˙l},{ψi},{ψ˙i})=I2MIR˙I+i2μψ˙i(r)ψ˙i(r)drE({ψi};{RI}).(2.10.13)

这里μ被称为虚拟电子质量。E({φ i};{RI})是Kohn-Sham DFT中的能量泛函,而{φ i}可能是也可能不是原子构型{RI}的最小化Kohn-Sham轨道。

由拉格朗日方程(2.10.13)引起的运动方程给出了CPMD
M I R ˙ I ( t ) = − ∫ ρ ( r , t ) ∂ V e x t I ( r − R I ( t ) ) ∂ R I dr ⁡ − ∂ E I I ∂ R I ( { R I ( t ) } ) , I = 1 , … , M , μ ψ i ¨ ( t ) = − H [ ρ ( t ) ; { R I ( t ) } ] ψ i ( t ) + ∑ j ψ j ( t ) Λ j i ( t ) , i = 1 , … , N , ρ ( r , t ) = ∑ i = 1 N ∣ ψ i ( r , t ) ∣ 2 . \begin{aligned} M_{I}\dot{\boldsymbol{R}}_{I}(t)& =-\int\rho(\boldsymbol{r},t)\frac{\partial V_\mathrm{ext}^I(\boldsymbol{r}-\boldsymbol{R}_I(t))}{\partial\boldsymbol{R}_I}\operatorname{d\boldsymbol{r}}-\frac{\partial E_\mathrm{II}}{\partial\boldsymbol{R}_I}(\{\boldsymbol{R}_I(t)\}),\quad I=1,\ldots,M, \\ \mu\ddot{\psi_{i}}(t)& =-H[\rho(t);\{\boldsymbol{R}_I(t)\}]\psi_i(t)+\sum_j\psi_j(t)\Lambda_{ji}(t),\quad i=1,\ldots,N, \\ \rho(\boldsymbol{r},t)& =\sum_{i=1}^N\lvert\psi_i(r,t)\rvert^2. \end{aligned} MIR˙I(t)μψi¨(t)ρ(r,t)=ρ(r,t)RIVextI(rRI(t))drRIEII({RI(t)}),I=1,,M,=H[ρ(t);{RI(t)}]ψi(t)+jψj(t)Λji(t),i=1,,N,=i=1Nψi(r,t)2.

这里,Λ是拉格朗日乘子,使得{φ i(t)}在任何时间都是一个正交函数集。与BOMD相比,CPMD使用虚拟动力学来引导电子的运动,而不需要收敛的SCF迭代。电子轨道的动力学可以粗略地看作是在每个分子动力学步骤执行SCF迭代的一种特殊方式。由于哈密顿结构,CPMD的数值模拟是稳定的,并且与没有严格SCF收敛准则的BOMD相比,能量在更长的时间内是保守的。当系统有光谱间隙时,CPMD的精度由一个参数控制,即虚拟电子质量μ。当μ趋于零时,CPMD的结果接近BOMD的结果[69,9]。然而,也有研究表明,CPMD不适用于间隙消失的系统,例如金属系统[69]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值