分子动力学模拟基础知识

概要

从分子动力学(Molecular Dynamics, MD)模拟中学习原子间势(Interatomic Potential)是一个复杂的过程,但可以通过以下几个步骤来实现:

  1. 选择合适的力场模型:在计算原子间势之前,需要选择一个合适的力场模型,该模型用于描述原子间相互作用。常见的力场模型包括:lj potential(Lennard-Jones 势)、eam potential(Embedded Atom Method 势)、 Morse potential(Morse 势)等。

  2. 构建系统:构建一个由原子组成的系统,该系统应该包含足够多的原子以确保系统的统计性质。

  3. 设置模拟参数:包括选择合适的时间步长、模拟温度和压力等。

  4. 运行分子动力学模拟:使用选择的力场模型和模拟参数运行分子动力学模拟。

  5. 计算原子间势:从模拟结果中计算出原子间势,这可以通过计算相邻原子对之间的平均势能来实现。可以使用以下公式计算原子间势:

    U® = <E®> - <E(r=infinity)>

    其中U®表示原子间势,E®表示相邻原子对之间的平均势能,r表示原子间距离,<E(r=infinity)>表示在无穷远处原子对之间的平均势能。

  6. 验证原子间势:验证计算出的原子间势是否与实际情况一致,可以通过与实验数据或其他计算方法(如密度泛函法)进行比较来实现。

  7. 优化原子间势:如果计算出的原子间势与实际情况存在 discrepancy,则需要进一步优化力场模型。

通过上述步骤,您可以从分子动力学模拟中学习原子间势。需要注意的是,这是一个复杂的过程,需要对物理学和计算机科学有深入的了解。

一、计算原理

分子动力学(Molecular Dynamics, MD)模拟是一种通过计算机模拟分子系统随时间演化的方法,用于研究分子运动和相互作用。在从头计算(ab initio)中学习原子间势(interatomic potentials)的过程中,通常采用量子力学计算(如密度泛函理论,Density Functional Theory, DFT)获得原子间的相互作用信息,然后将这些信息用来构建经典力场(classical force field),并用于MD模拟。以下是详细的计算过程、计算公式和计算结果。

1. 从头计算获取原子间相互作用

首先,使用量子化学方法(例如密度泛函理论-DFT)计算体系中原子间的相互作用能量。计算的步骤包括:

a. 几何优化(Geometry Optimization)

确定分子或固体的平衡几何结构。在DFT计算中,目标是找到体系的基态能量最小的结构。

E ( R ) = min ⁡ [ ⟨ Ψ ( R ) ∣ H ^ ∣ Ψ ( R ) ⟩ ] E(\mathbf{R})=\min\left[\langle\Psi(\mathbf{R})|\hat{H}|\Psi(\mathbf{R})\rangle\right] E(R)=min[Ψ(R)H^∣Ψ(R)⟩]

其中,R 是原子坐标, H ^ \hat H H^ 是哈密顿算符, Ψ ( R ) \Psi(R) Ψ(R)是体系的波函数。

b. 力的计算(Force Calculation)

在平衡几何结构基础上,计算每个原子受到的力:

F i = − ∇ R i E ( R ) \mathbf{F}_i=-\nabla_{\mathbf{R}_i}E(\mathbf{R}) Fi=RiE(R)

2. 构建经典力场

使用DFT计算得到的能量和力信息来参数化经典力场。经典力场通常采用经验势能函数的形式,如Lennard-Jones势、嵌入原子法(Embedded Atom Method, EAM)等。常见的势能函数形式包括:

a. Lennard-Jones势(Lennard-Jones Potential)

V ( r i j ) = 4 ϵ [ ( σ r i j ) 12 − ( σ r i j ) 6 ] V(r_{ij})=4\epsilon\left[\left(\frac{\sigma}{r_{ij}}\right)^{12}-\left(\frac{\sigma}{r_{ij}}\right)^6\right] V(rij)=4ϵ[(rijσ)12(rijσ)6]

其中,rij​ 是原子i和j之间的距离, ϵ 和 σ 是势能参数。

b. EAM势(Embedded Atom Method)

EAM势能函数结合了双体势(pair potential)和嵌入函数(embedding function):

E = ∑ i F i ( ρ i ) + 1 2 ∑ i ≠ j ϕ ( r i j ) E=\sum_iF_i(\rho_i)+\frac12\sum_{i\neq j}\phi(r_{ij}) E=iFi(ρi)+21i=jϕ(rij)

其中,Fi​(ρi​) 是嵌入函数, ρi​ 是原子i的电子密度, ϕ(rij​) 是双体势。

3. 分子动力学模拟

使用参数化的力场进行MD模拟。MD模拟的基本步骤如下:

a. 初始化(Initialization)

根据系统的初始条件(如温度、压力和初始位置)初始化原子的速度和位置。

b. 时间积分(Time Integration)

使用数值积分方法(如Verlet算法)计算随时间演化的原子位置和速度:

R i ( t + Δ t ) = R i ( t ) + V i ( t ) Δ t + 1 2 A i ( t ) ( Δ t ) 2 \mathbf{R}_i(t+\Delta t)=\mathbf{R}_i(t)+\mathbf{V}_i(t)\Delta t+\frac12\mathbf{A}_i(t)(\Delta t)^2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值