文章目录
概要
从分子动力学(Molecular Dynamics, MD)模拟中学习原子间势(Interatomic Potential)是一个复杂的过程,但可以通过以下几个步骤来实现:
-
选择合适的力场模型:在计算原子间势之前,需要选择一个合适的力场模型,该模型用于描述原子间相互作用。常见的力场模型包括:lj potential(Lennard-Jones 势)、eam potential(Embedded Atom Method 势)、 Morse potential(Morse 势)等。
-
构建系统:构建一个由原子组成的系统,该系统应该包含足够多的原子以确保系统的统计性质。
-
设置模拟参数:包括选择合适的时间步长、模拟温度和压力等。
-
运行分子动力学模拟:使用选择的力场模型和模拟参数运行分子动力学模拟。
-
计算原子间势:从模拟结果中计算出原子间势,这可以通过计算相邻原子对之间的平均势能来实现。可以使用以下公式计算原子间势:
U® = <E®> - <E(r=infinity)>
其中U®表示原子间势,E®表示相邻原子对之间的平均势能,r表示原子间距离,<E(r=infinity)>表示在无穷远处原子对之间的平均势能。
-
验证原子间势:验证计算出的原子间势是否与实际情况一致,可以通过与实验数据或其他计算方法(如密度泛函法)进行比较来实现。
-
优化原子间势:如果计算出的原子间势与实际情况存在 discrepancy,则需要进一步优化力场模型。
通过上述步骤,您可以从分子动力学模拟中学习原子间势。需要注意的是,这是一个复杂的过程,需要对物理学和计算机科学有深入的了解。
一、计算原理
分子动力学(Molecular Dynamics, MD)模拟是一种通过计算机模拟分子系统随时间演化的方法,用于研究分子运动和相互作用。在从头计算(ab initio)中学习原子间势(interatomic potentials)的过程中,通常采用量子力学计算(如密度泛函理论,Density Functional Theory, DFT)获得原子间的相互作用信息,然后将这些信息用来构建经典力场(classical force field),并用于MD模拟。以下是详细的计算过程、计算公式和计算结果。
1. 从头计算获取原子间相互作用
首先,使用量子化学方法(例如密度泛函理论-DFT)计算体系中原子间的相互作用能量。计算的步骤包括:
a. 几何优化(Geometry Optimization)
确定分子或固体的平衡几何结构。在DFT计算中,目标是找到体系的基态能量最小的结构。
E ( R ) = min [ ⟨ Ψ ( R ) ∣ H ^ ∣ Ψ ( R ) ⟩ ] E(\mathbf{R})=\min\left[\langle\Psi(\mathbf{R})|\hat{H}|\Psi(\mathbf{R})\rangle\right] E(R)=min[⟨Ψ(R)∣H^∣Ψ(R)⟩]
其中,R 是原子坐标, H ^ \hat H H^ 是哈密顿算符, Ψ ( R ) \Psi(R) Ψ(R)是体系的波函数。
b. 力的计算(Force Calculation)
在平衡几何结构基础上,计算每个原子受到的力:
F i = − ∇ R i E ( R ) \mathbf{F}_i=-\nabla_{\mathbf{R}_i}E(\mathbf{R}) Fi=−∇RiE(R)
2. 构建经典力场
使用DFT计算得到的能量和力信息来参数化经典力场。经典力场通常采用经验势能函数的形式,如Lennard-Jones势、嵌入原子法(Embedded Atom Method, EAM)等。常见的势能函数形式包括:
a. Lennard-Jones势(Lennard-Jones Potential)
V ( r i j ) = 4 ϵ [ ( σ r i j ) 12 − ( σ r i j ) 6 ] V(r_{ij})=4\epsilon\left[\left(\frac{\sigma}{r_{ij}}\right)^{12}-\left(\frac{\sigma}{r_{ij}}\right)^6\right] V(rij)=4ϵ[(rijσ)12−(rijσ)6]
其中,rij 是原子i和j之间的距离, ϵ 和 σ 是势能参数。
b. EAM势(Embedded Atom Method)
EAM势能函数结合了双体势(pair potential)和嵌入函数(embedding function):
E = ∑ i F i ( ρ i ) + 1 2 ∑ i ≠ j ϕ ( r i j ) E=\sum_iF_i(\rho_i)+\frac12\sum_{i\neq j}\phi(r_{ij}) E=i∑Fi(ρi)+21i=j∑ϕ(rij)
其中,Fi(ρi) 是嵌入函数, ρi 是原子i的电子密度, ϕ(rij) 是双体势。
3. 分子动力学模拟
使用参数化的力场进行MD模拟。MD模拟的基本步骤如下:
a. 初始化(Initialization)
根据系统的初始条件(如温度、压力和初始位置)初始化原子的速度和位置。
b. 时间积分(Time Integration)
使用数值积分方法(如Verlet算法)计算随时间演化的原子位置和速度:
R i ( t + Δ t ) = R i ( t ) + V i ( t ) Δ t + 1 2 A i ( t ) ( Δ t ) 2 \mathbf{R}_i(t+\Delta t)=\mathbf{R}_i(t)+\mathbf{V}_i(t)\Delta t+\frac12\mathbf{A}_i(t)(\Delta t)^2