LinLin(一)

一、量子力学基础理论

1.1有限维量子系统

斯特恩——格拉赫(Stern–Gerlach)实验

![[Pasted image 20240217215514.png|图1.斯特恩——格拉赫实验的设置。|375]]

在烤箱中,银原子失去了一个价电子,因此携带了一个称为自旋的磁矩,用矢量μ∈R3表示。银原子在磁场中的轨迹是向上弯曲还是向下弯曲取决于μ的方向。虽然我们将实验的详细设置以及经典物理预测的推导留给感兴趣的读者的标准物理教科书,但经典物理对屏幕上z坐标分布的预测可以由图2(a)定性描述。由于每个银原子都是在热状态下制备的,初始磁矩μ可以指向任何方向,因此经典物理学总是预测屏幕上的连续分布(分布的特定形状对我们的讨论并不重要)。SG实验的结果令人震惊地不同:检测屏幕总是显示离散的对称双峰分布,如图2(b)所示。

![[Pasted image 20240220133454.png|图2.(a)根据经典理论预测Stern-Gerlach实验的结果和(b)实验结果。]]

实验装置如上图所示,我们将SGz器件的两种输出状态分别定义为|+z>和|-z>。按照狄拉克符号,| ⋅ \cdot >被称为ket,用于表示给定的量子态。我们可以阻断输出的一个通道,比如|-z>。这就产生了滤波装置,其从任何初始混合状态中去除|−z>的贡献。

![[Pasted image 20240217220350.png|图3.(a)沿Z方向的Stern-Gerlach装置和(b)过滤装置。|475]]

为了理解实验结果的本质,斯特恩和格拉赫继续进行其他一些实验。首先,如果我们将SGz滤波装置产生的|+z>状态传递给另一个SGz装置,则只有一个输出状态|+z>(图1.4(a))。这表明|+z>与SGz装置有内在联系。根据对称性,同样的结果适用于|-z>状态。
![[Pasted image 20240608063323.png]]

状态空间

关键词:
状态向量或ket向量、内积-狄拉克符号、

下面我们证明了SG实验的神秘实验结果可以用2 × 2矩阵的线性代数来解释

量子力学假设自旋1/2粒子的状态是与 C 2 C^2 C2同构的向量空间H上的二维向量,称为状态向量空间(或简称为状态空间)。元素| ψ \psi ψ>∈H称为状态向量或ket向量。状态|+z>,|−z>构成H的基,因此任何一般状态向量| ψ \psi ψ>都可以写成这两个基向量的线性组合
∣ ψ ⟩ = c 1 ∣ + z ⟩ + c 2 ∣ − z ⟩ ,    c 1 , c 2 ∈ C . (1.1.1) \left| \psi \right\rangle=c_1 \left| +z \right\rangle+c_2\left| -z \right\rangle,\ \ c_1,c_2\in C.\tag{1.1.1} ψ=c1+z+c2z,  c1,c2C.(1.1.1)
特别地,状态|±x>,|±y>也是H中的状态,并且可以展开为|±z>的线性组合。
量子力学假设向量空间H配备有内积( ⋅ , ⋅ \cdot,\cdot ,),因此H是希尔伯特空间(在无限维的情况下,也假设空间相对于内积是完备的)。两个ket向量之间的内积通常用狄拉克符号写成<φ|ψ>。特别地,符号<φ|可以单独用作bra向量,bra向量是H的对偶空间中的向量。状态|±z>在该内积下是正交的,即,
⟨ + z | . + z ⟩ = ⟨ − z | . − z ⟩ = 1 ,   ⟨ + z | . − z ⟩ = 0. (1.1.2) \left\langle+z\middle|\middle.+z\right\rangle=\left\langle-z\middle|\middle.-z\right\rangle=1,\ \left\langle+z\middle|\middle.-z\right\rangle=0.\tag{1.1.2} +z+z=zz=1, +zz=0.(1.1.2)
z替换为x或y上式(1.1.2)也成立,并且状态±z>也可以扩展为±x>的线性组合。上面的讨论可以推广到由有限维希尔伯特空间H表示的任何有限维量子系统。给定H的正交基集,用 ∣ ψ i ⟩ i = 1 n \left| \psi_{i} \right\rangle_{i=1}^{n} ψii=1n表示,任何状态向量φ>都可以写成这些基向量的线性组合为
∣ ψ ⟩ = ∑ i = 1 n c i ∣ φ i ⟩ , c i ∈ C . (1.1.3a) |\psi\rangle=\sum_{i=1}^nc_i|\varphi_i\rangle,\quad c_i\in\mathbb{C}.\tag{1.1.3a} ψ=i=1nciφi,ciC.(1.1.3a)
1 = ⟨ ψ ∣ ψ ⟩ = ∑ i , j = 1 n c i ∗ c j ⟨ φ i ∣ φ j ⟩ = ∑ i , j = 1 n c i ∗ c j δ i j = ∑ i = 1 n ∣ c i ∣ 2 . (1.1.3b) 1=\langle\psi|\psi\rangle=\sum_{i,j=1}^nc_i^*c_j\langle\varphi_i|\varphi_j\rangle=\sum_{i,j=1}^nc_i^*c_j\delta_{ij}=\sum_{i=1}^n|c_i|^2.\tag{1.1.3b} 1=ψψ=i,j=1ncicjφiφj=i,j=1ncicjδij=i=1nci2.(1.1.3b)

这里 ∣ c i ∣ 2 |c_i|^2 ci2可以解释为状态向量{φ i>}上的概率分布。
这里δ ij是克罗内克δ符号。注意,ci2可以被解释为状态向量{φ i>}上的概率分布。事实上,量子力学假设这样的概率分布恰恰是物理可观察物的测量过程的结果的分布,如下文将解释的。

量子算符

关键词:
自伴、对角化、量子化、本征态-本征值、

我们首先介绍一些符号。取一个作用在有限维希尔伯特空间H上的线性算子 A ^ \hat{A} A^ A ^ ∗ \hat{A}^* A^表示 A ^ \hat{A} A^的伴随,被定义为:
⟨ φ ∣ A ^ ψ ⟩ = ⟨ A ^ ∗ φ ∣ ψ ⟩ ∀ ∣ φ ⟩ , ∣ ψ ⟩ ∈ H . (1.1.4) \langle\varphi|\hat{A}\psi\rangle=\langle\hat{A}^*\varphi|\psi\rangle\quad\forall|\varphi\rangle,|\psi\rangle\in\mathcal{H}.\tag{1.1.4} φA^ψ=A^φψ∀∣φ,ψH.(1.1.4)
自伴算子:如果线性算子 A ^ \hat{A} A^的伴随与线性算子 A ^ \hat{A} A^本身相同。
A ^ \hat{A} A^是自伴算子,内积 ⟨ φ ∣ A ^ ψ ⟩ \langle\varphi|\hat{A}\psi\rangle φA^ψ可以用 ⟨ φ ∣ A ^ ∣ ψ ⟩ \langle\varphi|\hat{A}|\psi\rangle φA^ψ表示。有限维空间上的所有自伴算子都可以对角化,即存在特征值 a i a_i ai和相应的特征向量(本征态)| φ i φ_i φi>,i=1,…,n,使得对于每个i,成立
A ^ ∣ φ i ⟩ = a i ∣ φ i ⟩ . (1.1.5) \hat{A}|\varphi_i\rangle=a_i|\varphi_i\rangle.\tag{1.1.5} A^φi=aiφi.(1.1.5)
A ^ \hat{A} A^是自伴的,所有特征值都是实的,所有特征向量的集合形成H的正交基集
⟨ φ i ∣ φ j ⟩ = δ i j , i , j = 1 , … , n . (1.1.6) \langle\varphi_i|\varphi_j\rangle=\delta_{ij},\quad i,j=1,\ldots,n.\tag{1.1.6} φiφj=δij,i,j=1,,n.(1.1.6)
将经典力学中的可观测值映射到量子力学中的线性算符的过程称为量子化

在什么意义上,物理可观测性可以用自伴算符来表示?

我们知道,在经典物理学中,可以在不干扰系统的情况下测量系统的状态。这意味着我们可以指出,一个经典粒子处于位置r,速度为v,而获得这种信息所需的测量过程与经典态的相互作用程度可以忽略不计。
另一方面,量子力学假设所有的测量过程都必须与量子态相互作用。
即,正如狄拉克所说,“测量总是导致系统跳入被测量的动态变量的本征态,该本征态所属的特征值等于测量的结果。”换句话说,假设初始状态是给定的,作为本征态 A ^ \hat{A} A^的线性组合表示为
∣ ψ ⟩ = ∑ i c i ∣ φ i ⟩ , c i ∈ C . (1.1.7) |\psi\rangle=\sum_ic_i|\varphi_i\rangle,\quad c_i\in\mathbb{C}.\tag{1.1.7} ψ=iciφi,ciC.(1.1.7)
如果我们想要测量对应于状态|φ>的物理可观测值,那么输出状态|φ>必须是 A ^ \hat{A} A^的特征向量之一,但是测量过程是设计好的。测量过程的这种解释提供了特征值的物理意义:
对于有限维量子系统,任何物理可观测值只取离散值,由相应的自伴算符的特征值给出

什么是态,本征态,对应的概率分布,本征值?

如(1.1.3)所示,系数 ∣ c i ∣ 2 |c_i|^2 ci2可以解释为本征态上的概率分布。量子力学假设,在测量过程中,态|φ>应该随机坍缩为本征态 ∣ φ i ⟩ |\varphi_i\rangle φi,测量的结果值是概率为 ∣ c i ∣ 2 |c_i|^2 ci2的相关本征值 a i a_i ai。因此,量子物理学中任何单一测量的结果几乎都不是预先确定的。一个重要的,也是唯一的例外是|φ>已经是一个本征态,比如说| φ 1 φ_1 φ1>。在这种情况下,如果i=1, ∣ c i ∣ 2 |c_i|^2 ci2为1,否则为0。因此,测量结果确定为 a 1 a_1 a1,测量后状态为| φ 1 φ_1 φ1>。

虽然人们不能确定地预测与线性算子 A ^ \hat{A} A^相关联的单个测量结果的值,但可以确定地预测由 A ^ \hat{A} A^表示的期望值
⟨ A ^ ⟩ = ⟨ ψ ∣ A ^ ∣ ψ ⟩ = ∑ i , j = 1 n c i ∗ c j a i δ i j = ∑ i = 1 n a i ∣ c i ∣ 2 . (1.1.8) \langle\hat{A}\rangle=\langle\psi|\hat{A}|\psi\rangle=\sum_{i,j=1}^nc_i^*c_ja_i\delta_{ij}=\sum_{i=1}^na_i|c_i|^2.\tag{1.1.8} A^=ψA^ψ=i,j=1ncicjaiδij=i=1naici2.(1.1.8)
在这里,方程的右边正是物理可观测物的期望值,如果一个人可以制备大量相同状态的副本并重复测量,期望值可以通过实验获得。

我们现在确定与状态|±x>、|±y>和|±z>相关的展开系数

图2(b)中的实验产生了双峰对称分布。上述概率解释暗示了以下关系:
∣ + x ⟩ = 1 2 [ ∣ + z ⟩ + e i α ∣ − z ⟩ ] , ∣ − x ⟩ = 1 2 [ ∣ + z ⟩ − e i α ∣ − z ⟩ ] (1.1.9) |+_{x}\rangle=\frac{1}{\sqrt{2}}\left[|+_{z}\rangle+e^{\mathrm{i}\alpha}|-_{z}\rangle\right],\quad|-_{x}\rangle=\frac{1}{\sqrt{2}}\left[|+_{z}\rangle-e^{\mathrm{i}\alpha}|-_{z}\rangle\right]\tag{1.1.9} +x=2 1[+z+eiαz]x=2 1[+zeiαz](1.1.9)
这里 1 2 \frac{1}{\sqrt{2}} 2 1是一个归一化因子,α是一个任意相位因子,我们选择|+z>的系数正好是 1 2 \frac{1}{\sqrt{2}} 2 1,因为状态的物理意义在乘以任何非零复数时都不会改变。我们还有
∣ + y ⟩ = 1 2 [ ∣ + z ⟩ + e i β ∣ − z ⟩ ] , ∣ − y ⟩ = 1 2 [ ∣ + z ⟩ − e i β ∣ − z ⟩ ] . (1.1.10) |+_{y}\rangle=\frac{1}{\sqrt{2}}\left[|+_{z}\rangle+e^{\mathrm{i}\beta}|-_{z}\rangle\right],\quad|-_{y}\rangle=\frac{1}{\sqrt{2}}\left[|+_{z}\rangle-e^{\mathrm{i}\beta}|-_{z}\rangle\right].\tag{1.1.10} +y=2 1[+z+eiβz],y=2 1[+zeiβz].(1.1.10)

测不准原理

两个算符不交换的程度是量子力学中的一个重要量。设H上的两个算子,则定义为
[ A ^ , B ^ ] : = A ^ B ^ − B ^ A ^ . (1.1.11) [\hat{A},\hat{B}]:=\hat A\hat{B}-\hat{B}\hat{A}.\tag{1.1.11} [A^,B^]:=A^B^B^A^.(1.1.11)
[ A ^ , B ^ ] = 0 [\hat{A},\hat{B}]=0 [A^,B^]=0,我们称 A ^ , B ^ \hat{A},\hat{B} A^B^相容的(可交换的),否则他们不相容。

相容性条件具有直接的物理后果。从线性代数中我们知道,对于相容的厄米矩阵 A ^ \hat{A} A^ B ^ \hat{B} B^,我们总是可以找到特征向量| φ i φ_i φi>,因此这两个算子可以同时对角化(高代):
A ^ ∣ φ i ⟩ = a i ∣ φ i ⟩ , B ^ ∣ φ i ⟩ = b i ∣ φ i ⟩ . (1.1.12) \hat{A}|\varphi_i\rangle=a_i|\varphi_i\rangle,\quad\hat{B}|\varphi_i\rangle=b_i|\varphi_i\rangle.\tag{1.1.12} A^φi=aiφi,B^φi=biφi.(1.1.12)
兼容性条件是充分和必要的。换句话说,如果两个算符不相容,那么就不能总是同时测量两个物理可观测量值。

用测不准原理来量化

关键词:
相容、反换向器、不确定性、

测不准原理可以用不等式来表述,
上面的陈述可以用不确定性原理来量化,不确定性原理可以用A和B的测量波动的不等式来表述。对于给定的运算符和状态ψ,定义一个运算符
Δ A ^ = A ^ − ⟨ A ^ ⟩ I : = A ^ − ⟨ ψ ∣ A ^ ∣ ψ ⟩ I . \Delta\hat{A}=\hat{A}-\langle\hat{A}\rangle I:=\hat{A}-\langle\psi|\hat{A}|\psi\rangle I. ΔA^=A^A^I:=A^ψA^ψI.
因此, Δ A ^ \Delta\hat{A} ΔA^是一个期望为0的算符:
⟨ Δ A ^ ⟩ = ⟨ ψ ∣ Δ A ^ ∣ ψ ⟩ = 0. \langle\Delta\hat{A}\rangle=\langle\psi|\Delta\hat{A}|\psi\rangle=0. ΔA^=ψ∣ΔA^ψ=0.
方差可定义为:
⟨ Δ A ^ 2 ⟩ = ⟨ ψ ∣ ( A ^ − ⟨ A ^ ⟩ I ) 2 ∣ ψ ⟩ = ⟨ A ^ 2 ⟩ − ⟨ A ^ ⟩ 2 . (1.1.13) \langle\Delta\hat{A}^2\rangle=\langle\psi|(\hat{A}-\langle\hat{A}\rangle I)^2|\psi\rangle=\langle\hat{A}^2\rangle-\langle\hat{A}\rangle^2.\tag{1.1.13} ΔA^2=ψ(A^A^I)2ψ=A^2A^2.(1.1.13)
注意到如果算子 A ^ \hat{A} A^ B ^ \hat{B} B^是相容的,并且|φ>是它们的公共特征向量之一,则
⟨ Δ A ^ 2 ⟩ = ⟨ Δ B ^ 2 ⟩ = 0 \langle\Delta\hat{A}^2\rangle=\langle\Delta\hat{B}^2\rangle=0 ΔA^2=ΔB^2=0
这就意味着它们可以同时拥有一个共同的本征态。换句话说,如果两个算符相容,那么可以找到一组彼此对易的可观测量,它们可以在同一组态中完全确定地被测量出来,即不存在不确定性。但是, ⟨ Δ A ^ 2 ⟩ \langle\Delta\hat{A}^2\rangle ΔA^2 ⟨ Δ B ^ 2 ⟩ \langle\Delta\hat{B}^2\rangle ΔB^2不能任意小。
回忆一下cauchy-schwarz不等式: ⟨ Δ A ^ 2 ⟩ ⟨ Δ B ^ 2 ⟩ ≥ ∣ ⟨ Δ A ^ 2 Δ B ^ 2 ⟩ ∣ 2 \langle\Delta\hat{A}^2\rangle\langle\Delta\hat{B}^2\rangle\geq| \langle\Delta\hat{A}^2\Delta\hat{B}^2\rangle|^2 ΔA^2ΔB^2ΔA^2ΔB^22
注意等式右边: Δ A ^ Δ B ^ = 1 2 ( Δ A ^ Δ B ^ + Δ B ^ Δ A ^ ) + 1 2 ( Δ A ^ Δ B ^ − Δ B ^ Δ A ^ ) = 1 2 { Δ A ^ , Δ B ^ } + 1 2 [ Δ A ^ , Δ B ^ ] , \begin{aligned} \Delta\hat{A}\Delta\hat{B}& =\frac12(\Delta\hat{A}\Delta\hat{B}+\Delta\hat{B}\Delta\hat{A})+\frac12(\Delta\hat{A}\Delta\hat{B}-\Delta\hat{B}\Delta\hat{A}) \\ &=\frac12\{\Delta\hat{A},\Delta\hat{B}\}+\frac12[\Delta\hat{A},\Delta\hat{B}], \end{aligned} ΔA^ΔB^=21(ΔA^ΔB^+ΔB^ΔA^)+21(ΔA^ΔB^ΔB^ΔA^)=21{ΔA^,ΔB^}+21[ΔA^,ΔB^],其中, { A ^ , B ^ } = A ^ B ^ + B ^ A ^ \{\hat{A},\hat{B}\}=\hat{A}\hat{B}+\hat{B}\hat{A} {A^,B^}=A^B^+B^A^反换向器
结合上面两式可以得到
∣ ⟨ Δ A ^ Δ B ^ ⟩ ∣ 2 ≥ 1 4 ∣ ⟨ [ Δ A ^ , Δ B ^ ] ⟩ ∣ 2 = 1 4 ∣ ⟨ [ A ^ , B ^ ] ⟩ ∣ 2 . \begin{gathered}|\langle\Delta\hat{A}\Delta\hat{B}\rangle|^2\geq\frac14|\langle[\Delta\hat{A},\Delta\hat{B}]\rangle|^2=\frac14|\langle[\hat{A},\hat{B}]\rangle|^2.\end{gathered} ΔA^ΔB^241⟨[ΔA^,ΔB^]⟩2=41⟨[A^,B^]⟩2. ⟨ Δ A ^ 2 ⟩ ⟨ Δ B ^ 2 ⟩ ≥ 1 4 ∣ ⟨ [ A ^ , B ^ ] ⟩ ∣ 2 . (1.1.14) \langle\Delta\hat{A}^2\rangle\langle\Delta\hat{B}^2\rangle\geq\frac14|\langle[\hat{A},\hat{B}]\rangle|^2.\tag{1.1.14} ΔA^2ΔB^241⟨[A^,B^]⟩2.(1.1.14)方程(1.1.14)在有限维量子系统的上下文中被称为测不准原理。它指出,由交换子的期望值给出的两个算子的乘积 ⟨ Δ A ^ 2 ⟩ ⟨ Δ B ^ 2 ⟩ \langle\Delta\hat{A}^2\rangle\langle\Delta\hat{B}^2\rangle ΔA^2ΔB^2的不确定性有一个下界。由于测不准原理,人们无法同时获得(例如)“ S ^ x \hat S_x S^x”和“ S ^ z \hat S_z S^z”的精确测量值。

薛定谔方程

关键词:
传播子、半群属性、

为了理解时间t0时的一个量子态|φ(t0)>如何演化为时间t>t0时的另一个态|φ(t)>,量子力学假设存在一个线性算子 U ^ \hat{U} U^(t,t0),称为传播子,它独立于初始态|φ(t0)>并满足|φ(t)>= U ^ \hat{U} U^(t,t0)|φ(t0)>。正常化惯例意味着
⟨ ψ ( t ) ∣ ψ ( t ) ⟩ = ⟨ ψ ( t 0 ) ∣ U ^ ∗ ( t , t 0 ) U ^ ( t , t 0 ) ∣ ψ ( t 0 ) ⟩ = 1 \langle\psi(t)|\psi(t)\rangle=\langle\psi(t_0)|\hat{U}^*(t,t_0)\hat{U}(t,t_0)|\psi(t_0)\rangle=1 ψ(t)ψ(t)⟩=ψ(t0)U^(t,t0)U^(t,t0)ψ(t0)⟩=1
对于任何t≥t0和初始状态|φ(t0)>。因此 U ^ ∗ ( t , t 0 ) U ^ ( t , t 0 ) = I \hat{U}^*(t,t_0)\hat{U}(t,t_0)=I U^(t,t0)U^(t,t0)=I,由于 U ^ ( t , t 0 ) \hat{U}(t,t_0) U^(t,t0)是有限维矩阵,所以对于任何t≥t0,算子 U ^ ( t , t 0 ) \hat{U}(t,t_0) U^(t,t0)都是酉的
演化算子U应该满足的另一个自然性质(半群属性)是,对于时间t0<t1<t2,
∣ ψ ( t 2 ) ⟩ = U ^ ( t 2 , t 0 ) ∣ ψ ( t 0 ) ⟩ = U ^ ( t 2 , t 1 ) U ^ ( t 1 , t 0 ) ∣ ψ ( t 0 ) ⟩ . |\psi(t_2)\rangle=\hat{U}(t_2,t_0)|\psi(t_0)\rangle=\hat{U}(t_2,t_1)\hat{U}(t_1,t_0)|\psi(t_0)\rangle. ψ(t2)⟩=U^(t2,t0)ψ(t0)⟩=U^(t2,t1)U^(t1,t0)ψ(t0)⟩.
∣ ψ ( t + Δ t ) ⟩ = U ^ ( t + Δ t , t 0 ) ∣ ψ ( t 0 ) ⟩ = U ^ ( t + Δ t , t ) U ^ ( t , t 0 ) ∣ ψ ( t 0 ) ⟩ = U ^ ( t + Δ t , t ) ∣ ψ ( t ) ⟩ . \begin{aligned} |\psi(t+\Delta t)\rangle & =\hat{U}(t+\Delta t,t_0)|\psi(t_0)\rangle \\ &=\hat{U}(t+\Delta t,t)\hat{U}(t,t_0)|\psi(t_0)\rangle \\ &=\hat{U}(t+\Delta t,t)|\psi(t)\rangle. \end{aligned} ψ(t+Δt)⟩=U^(t+Δt,t0)ψ(t0)⟩=U^(t+Δt,t)U^(t,t0)ψ(t0)⟩=U^(t+Δt,t)ψ(t)⟩.
假设 ∣ ψ ( t ) ⟩ |\psi(t)\rangle ψ(t)⟩的演变是连续的, lim ⁡ Δ t → 0 + ∣ ψ ( t + Δ t ) ⟩ = ∣ ψ ( t ) ⟩ \lim_{\Delta t\to0^+}|\psi(t+\Delta t)\rangle=|\psi(t)\rangle limΔt0+ψ(t+Δt)⟩=ψ(t)⟩
我们有
U ^ ( t , t ) = lim ⁡ Δ t → 0 + U ^ ( t + Δ t , t ) = I . \hat{U}(t,t)=\lim_{\Delta t\to0^+}\hat{U}(t+\Delta t,t)=I. U^(t,t)=Δt0+limU^(t+Δt,t)=I.
进行泰勒展开
U ^ ( t + Δ t ) = I − i Ω ^ ( t ) Δ t + O ( Δ t 2 ) . \hat{U}(t+\Delta t)=I-\mathrm{i}\hat{\Omega}(t)\Delta t+\mathcal{O}(\Delta t^{2}). U^(t+Δt)=IiΩ^(t)Δt+O(Δt2).
U ^ ∗ ( t + Δ t , t ) U ^ ( t + Δ t , t ) = ( I + i Ω ^ ∗ ( t ) Δ t + O ( Δ t 2 ) ) ( I − i Ω ^ ( t ) Δ t + O ( Δ t 2 ) ) = I + i ( Ω ^ ∗ ( t ) − Ω ^ ( t ) ) Δ t + O ( Δ t 2 ) . \begin{aligned} \hat{U}^{*}(t+\Delta t,t)\hat{U}(t+\Delta t,t)& =(I+\text{i}\hat{\Omega}^*(t)\Delta t+\mathcal{O}(\Delta t^2))(I-\text{i}\hat{\Omega}(t)\Delta t+\mathcal{O}(\Delta t^2)) \\ &=I+\mathrm{i}(\hat{\Omega}^*(t)-\hat{\Omega}(t))\Delta t+\mathcal{O}(\Delta t^2). \end{aligned} U^(t+Δt,t)U^(t+Δt,t)=(I+iΩ^(t)Δt+O(Δt2))(IiΩ^(t)Δt+O(Δt2))=I+i(Ω^(t)Ω^(t))Δt+O(Δt2).
量子力学假设:“Ω”是由哈密顿算子 H ^ \hat{H} H^给出的,它是由经典物理学中哈密顿算子的量子化过程得到的,并且与系统的总能量有关。由上式
∣ ψ ( t + Δ t ) ⟩ = ∣ ψ ( t ) ⟩ − i H ^ ( t ) Δ t ∣ ψ ( t ) ⟩ + O ( Δ t 2 ) . (1.1.15) |\psi(t+\Delta t)\rangle=|\psi(t)\rangle-\mathrm{i}\hat{H}(t)\Delta t|\psi(t)\rangle+\mathcal{O}(\Delta t^2).\tag{1.1.15} ψ(t+Δt)⟩=ψ(t)⟩iH^(t)Δtψ(t)⟩+O(Δt2).(1.1.15)
取极限 Δ t → 0 \Delta t\to0 Δt0,我们得到一个微分方程
i ∂ t ∣ ψ ( t ) ⟩ = H ^ ( t ) ∣ ψ ( t ) ⟩ (1.1.16) \text{i}\partial_t|\psi(t)\rangle=\hat{H}(t)|\psi(t)\rangle \tag{1.1.16} itψ(t)⟩=H^(t)ψ(t)⟩(1.1.16)
被称为薛定谔方程
让我们考虑一下当哈密顿量与时间无关时薛定谔方程的解, 即 H ^ ( t ) = H ^ \hat{H}(t)=\hat{H} H^(t)=H^, 从而可以对角化为
H ^ ∣ φ i ⟩ = E i ∣ φ ⟩ \hat{H}|\varphi_i\rangle=E_i|\varphi\rangle H^φi=Eiφ
如果所有的特征值 E i E_i Ei都是不同的,那么我们可以区分| φ 0 φ_0 φ0>为基态,| φ 1 φ_1 φ1>为第一激发态,| φ 2 φ_2 φ2>为第二激发态,等等。

薛定谔方程的解

如果初始状态为 H ^ \hat{H} H^的特征向量, ∣ ψ ( t 0 ) ⟩ = ∣ φ i ⟩ , |\psi(t_0)\rangle=|\varphi_i\rangle, ψ(t0)⟩=φi,则薛定谔方程的解为
∣ ψ ( t ) ⟩ = e − i E i ( t − t 0 ) ∣ φ i ⟩ . |\psi(t)\rangle=e^{-\mathrm{i}E_i(t-t_0)}|\varphi_i\rangle. ψ(t)⟩=eiEi(tt0)φi.
如果我们从特征向量开始,除了旋转相位因子之外,状态将保持不变。由于作用在H上的任何自伴算子的特征向量都形成H的基,对于任何初始状态 ∣ ψ ( t 0 ) ⟩ = ∑ i c i ∣ φ i ⟩ , |\psi(t_0)\rangle=\sum_ic_i|\varphi_i\rangle, ψ(t0)⟩=iciφi, 薛定谔方程的解为
∣ ψ ( t ) ⟩ = ∑ i = 1 n c i e − i E i ( t − t 0 ) ∣ φ i ⟩ . |\psi(t)\rangle=\sum_{i=1}^nc_ie^{-\mathrm{i}E_i(t-t_0)}|\varphi_i\rangle. ψ(t)⟩=i=1ncieiEi(tt0)φi.
作为薛定谔方程的一个应用,我们给定算子 A ^ \hat{A} A^和| ψ ( t 0 ) \psi(t_0) ψ(t0)>研究期望值的演化行为。
其中,期望 ⟨ A ^ ⟩ ( t ) : = ⟨ ψ ( t ) ∣ A ^ ∣ ψ ( t ) ⟩ . \langle\hat A\rangle(t):=\langle\psi(t)|\hat A|\psi(t)\rangle. A^(t):=ψ(t)A^ψ(t)⟩.

1.2实空间中的薛定谔方程

现在让我们推广有限维状态空间的量子力学公式。由于粒子的位置可以取无限多个值,我们需要将有限维量子系统推广到无限维设置。首先对于实直线上的粒子,希尔伯特空间是
H = L 2 ( R ) : = { f ∣ ∫ R ∣ f ( x ) ∣ 2 d ⁡ x < ∞ } . (1.2.1) \mathcal{H}=L^2(\mathbb{R}):=\left\{f\mid\int_{\mathbb{R}}\lvert f(x)\rvert^2\operatorname{d}x<\infty\right\}.\tag{1.2.1} H=L2(R):={fRf(x)2dx<}.(1.2.1)
对于任意两个状态向量| ψ \psi ψ>,|φ>∈H,内积定义为
⟨ φ ∣ ψ ⟩ = ∫ R φ ∗ ( x ) ψ ( x ) d ⁡ x . \langle\varphi|\psi\rangle=\int_{\mathbb{R}}\varphi^*(x)\psi(x)\operatorname{d}x. φψ=Rφ(x)ψ(x)dx.
波函数的归一化条件是
∥ ψ ∥ 2 : = ⟨ ψ ∣ ψ ⟩ = ∫ R ∣ ψ ( x ) ∣ 2 d x = 1. \|\psi\|^2:=\langle\psi|\psi\rangle=\int_{\mathbb{R}}|\psi(x)|^2\mathrm{d}x=1. ψ2:=ψψ=Rψ(x)2dx=1.

实直线上的位置算子

位置算子 x ^ \hat{x} x^:是一个 H \mathcal{H} H上的一个线性算子, 作用于状态向量| ψ \psi ψ>, 函数 ψ ( x ) \psi(x) ψ(x)满足 ( x ^ ψ ) ( x ) = x ψ ( x ) ,   x ∈ R . (1.2.2) (\hat{x}\psi)(x)=x\psi(x),\ x\in R.\tag{1.2.2} (x^ψ)(x)=xψ(x), xR.(1.2.2)请注意这里符号的细微差别: x ^ \hat{x} x^是算子,而 x x x是一个实数,右边被理解为函数 x ψ x\psi xψ x x x处的求值。这个方程也可以用狄拉克符号写成
x ^ ∣ ψ ⟩ = ∣ x ψ ⟩ . (1.2.3) \hat{x}|\psi\rangle=|x\psi\rangle.\tag{1.2.3} x^ψ=xψ.(1.2.3)
再看位置算符的本征态:
x ^ ∣ ψ ⟩ = x 0 ∣ ψ ⟩    ∀ x ∈ R , (1.2.4) \hat{x}|\psi\rangle=x_0|\psi\rangle\ \ \forall x\in R,\tag{1.2.4} x^ψ=x0ψ  xR,(1.2.4)
这里如果 x ≠ x 0 x\neq x_0 x=x0, 则 ψ ( x ) = 0 \psi(x)=0 ψ(x)=0。上式意味着位置算符作用在波函数上会使得波函数发生平移变换,位置算符本质上描述了粒子的位置信息。
因为φ(x)在实直线上几乎处处消失,所以|φ>等价于空态。这与φ(x)是归一化本征函数的假设相矛盾。实际上,算符 x ^ \hat{x} x^没有任何平方可积本征态。位置算子的特征分解需要用Dirac δ函数来表示
δ ( x − x 0 ) = { ∞ , if x = x 0 ; 0 , otherwise , (1.2.5) \delta(x-x_0)=\begin{cases}\infty,&\text{if}x=x_0;\\0,&\text{otherwise},\end{cases}\tag{1.2.5} δ(xx0)={,0,ifx=x0;otherwise,(1.2.5)
并且有 ∫ δ ( x − x 0 ) d x = 1. \int\delta(x-x_0)\mathrm{d}x=1. δ(xx0)dx=1.
狄拉克δ符号允许我们使用 δ ( x − x 0 ) \delta(x-x_0) δ(xx0)正式定义状态|x0>。那么,形式特征分解的形式
x ^ ∣ x 0 ⟩ = x 0 ∣ x 0 ⟩ . (1.2.6) \hat{x}|x_0\rangle=x_0|x_0\rangle.\tag{1.2.6} x^x0=x0x0.(1.2.6)
使用这种符号,量子态|φ>和它的函数φ(x)之间的关系是
⟨ x ∣ ψ ⟩ = ψ ( x ) . (1.2.7) \langle x|\psi\rangle=\psi(x).\tag{1.2.7} xψ=ψ(x).(1.2.7)
⟨ x 1 ∣ x 2 ⟩ = δ ( x 1 − x 2 ) , (1.2.8) \langle x_1|x_2\rangle=\delta(x_1-x_2),\tag{1.2.8} x1x2=δ(x1x2),(1.2.8)
位置算符的定义域:
dom ⁡ x ^ = { ψ ∈ L 2 ( R ) ∣ ∫ R x 2 ∣ ψ ( x ) ∣ 2 d x < ∞ } , (1.2.9) \operatorname{dom}\hat{x}=\left\{\psi\in L^2(\mathbb{R})\left|\int_{\mathbb{R}}x^2|\psi(x)|^2\mathrm{d}x<\infty\right\},\right. \tag{1.2.9} domx^={ψL2(R) Rx2ψ(x)2dx<},(1.2.9)
它是 H = L 2 ( R ) \mathcal H=L_2(R) H=L2(R)的子集。它是一个稠密子集,因为它包含所有紧支持的连续函数。

动量算子

这里我们简单地陈述量子力学假设动量算符应该是微分算符
p ^ = − i d d x . \hat{p}=-\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}x}. p^=idxd.
换言之,对于ψ ∈ H \mathcal H H,
( p ^ ψ ) ( x ) = − i ψ ′ ( x ) . (\hat{p}\psi)(x)=-\mathrm{i}\psi^{\prime}(x). (p^ψ)(x)=iψ(x).
可以平行于位置算子来讨论“p”的本征函数。我们形式上用|p0>特征值为p0的 p ^ \hat p p^的本征函数表示,
p ^ ∣ p 0 ⟩ = p 0 ∣ p 0 ⟩ ,   p 0 ∈ R . \hat{p}|p_0\rangle=p_0|p_0\rangle,\ p_0\in R. p^p0=p0p0, p0R.
在实空间表示中,方程变成 − i d d x ⟨ x ∣ p 0 ⟩ = p 0 ⟨ x ∣ p 0 ⟩ ∀ x ∈ R . -\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}x}\langle x|p_0\rangle=p_0\langle x|p_0\rangle\quad\forall x\in\mathbb{R}. idxdxp0=p0xp0xR.
⟨ x ∣ p 0 ⟩ = C e i p 0 x , \langle x|p_0\rangle=Ce^{ip_0x}, xp0=Ceip0x,
其中C是一个常数。为了确定常数C,考虑任意函数 φ ( p ) ∈ L 2 ( R ) φ(p)∈L^2(R) φ(p)L2(R),那么Parseval恒等式表明
∫ R ∣ ∫ R 1 2 π e − i p x φ ( p ) d p ∣ 2 d x = ∫ R ∫ R ( 1 2 π ∫ R e i ( p 1 − p 2 ) x d x ) φ ∗ ( p 1 ) φ ( p 2 ) d p 1 d p 2 = ∫ ∣ φ ( p ) ∣ 2 d p . (1.2.10) \begin{aligned} &\int_{\mathbb{R}}\left|\int_{\mathbb{R}}\frac1{\sqrt{2\pi}}e^{-\mathrm{i}px}\varphi(p)\mathrm{d}p\right|^{2}\mathrm{d}x& \\ &=\int_{\mathbb{R}}\int_{\mathbb{R}}\left(\frac1{2\pi}\int_{\mathbb{R}}e^{\mathrm{i}(p_1-p_2)x}\mathrm{d}x\right)\varphi^*(p_1)\varphi(p_2)\mathrm{d}p_1\mathrm{d}p_2=\int|\varphi(p)|^2\mathrm{d}p. \end{aligned}\tag{1.2.10} R R2π 1eipxφ(p)dp 2dx=RR(2π1Rei(p1p2)xdx)φ(p1)φ(p2)dp1dp2=φ(p)2dp.(1.2.10)
由于φ是任意的,(1.2.10)也可以写成
1 2 π ∫ R e i ( p 1 − p 2 ) x d x = δ ( p 1 − p 2 ) . (1.2.11) \frac{1}{2\pi}\int_{\mathbb{R}}e^{\mathrm{i}(p_1-p_2)x}\mathrm{d}x=\delta(p_1-p_2).\tag{1.2.11} 2π1Rei(p1p2)xdx=δ(p1p2).(1.2.11)
这表明常数的选择是 C = 1 / 2 π C=1/\sqrt{2\pi} C=1/2π .
于是, ⟨ x ∣ p 0 ⟩ = 1 2 π e i p 0 x , ⟨ p ∣ ψ ⟩ = 1 2 π ∫ R e − i p x ψ ( x ) dx ⁡ . \begin{gathered}\langle x|p_0\rangle=\frac1{\sqrt{2\pi}}e^{\mathrm{i}p_0x},\\\\\langle p|\psi\rangle=\frac1{\sqrt{2\pi}}\int_{\mathbb{R}}e^{-\mathrm{i}px}\psi(x)\operatorname{dx}.\end{gathered} xp0=2π 1eip0x,pψ=2π 1Reipxψ(x)dx.与位置运算符相似, p ^ \hat p p^不能应用于所有函数 φ ( x ) ∈ L 2 ( R ) φ(x)∈L^2(R) φ(x)L2(R)。动量算符的定义域是
dom ⁡ p ^ = H 1 ( R ) : = { ψ ∈ L 2 ( R ) , ψ ′ ( x ) ∈ L 2 ( R ) } . (1.2.12) \operatorname{dom}\hat{p}=H^1(\mathbb{R}):=\begin{Bmatrix}\psi\in L^2(\mathbb{R}),\psi'(x)\in L^2(\mathbb{R})\end{Bmatrix}.\tag{1.2.12} domp^=H1(R):={ψL2(R),ψ(x)L2(R)}.(1.2.12)

测不准原理

我们可以用以下方法计算位置算子 x ^ \hat x x^和动量算子 p ^ \hat p p^的交换子
[ x ^ , p ^ ] ψ ( x ) = ( x ^ p ^ − p ^ x ^ ) ψ ( x ) = x ( − i ψ ′ ( x ) ) + i ψ ( x ) + i x ψ ′ ( x ) = i ψ ( x ) . (1.2.13) [\hat{x},\hat{p}]\psi(x)=(\hat{x}\hat{p}-\hat{p}\hat{x})\psi(x)=x(-\mathrm{i}\psi^{\prime}(x))+\mathrm{i}\psi(x)+\mathrm{i}x\psi^{\prime}(x)=\mathrm{i}\psi(x).\tag{1.2.13} [x^,p^]ψ(x)=(x^p^p^x^)ψ(x)=x(iψ(x))+iψ(x)+ixψ(x)=iψ(x).(1.2.13)
从而
[ x ^ , p ^ ] = i . [\hat x,\hat p]=i. [x^,p^]=i.
上式是量子力学中的一个基本关系,被称为正则交换关系
从正则交换关系中,我们发现位置和动量算符是不相容的,不可能同时确定量子粒子的位置和动量。(1.1.12)中的测不准原理给出了这种说法的更定量的版本,如下
⟨ ψ ∣ Δ x ^ 2 ∣ ψ ⟩ ⟨ ψ ∣ Δ p ^ 2 ∣ ψ ⟩ ≥ 1 4 ∣ ⟨ ψ ∣ [ x ^ , p ^ ] ∣ ψ ⟩ ∣ 2 = 1 4 , ⟨ Δ x ^ 2 ⟩ ⟨ Δ p ^ 2 ⟩ ≥ 1 2 . (1.2.14) \begin{gathered}\langle\psi|\Delta\hat{x}^2|\psi\rangle\langle\psi|\Delta\hat{p}^2|\psi\rangle\geq\frac14|\langle\psi|[\hat{x},\hat{p}]|\psi\rangle|^2=\frac14,\\\\\sqrt{\langle\Delta\hat{x}^2\rangle}\sqrt{\langle\Delta\hat{p}^2\rangle}\geq\frac12.\end{gathered}\tag{1.2.14} ψ∣Δx^2ψψ∣Δp^2ψ41ψ[x^,p^]ψ2=41,Δx^2 Δp^2 21.(1.2.14)
这个关系式(1.2.14)被称为海森堡测不准原理。

角动量算符

上面的讨论可以直接推广到高于1的维度。例如,在三维的情况下,我们可以将位置算子定义为向量 r ^ \hat r r^=( x ^ , y ^ , z ^ \hat x,\hat y,\hat z x^,y^,z^),动量算子 p ^ = ( p ^ x , p ^ y , p ^ z ) \hat p=(\hat p_x,\hat p_y,\hat p_z) p^=p^x,p^y,p^z。波函数被定义为 ψ ( r ) = ψ ( x , y , z ) ∈ \psi(r)=\psi(x,y,z)\in ψr=ψxyz L 2 ( R 3 ) L^2(R^3) L2R3。在定义了位置和动量算符之后,我们也可以定义量子力学中的角动量算符。在经典力学中,角动量定义为
L = r × p (1.2.15) L=r\times p\tag{1.2.15} L=r×p(1.2.15)
量子化规则将量子角动量算符定义为
L ^ = r ^ × p ^ = r ^ × ( − i ∇ r ) , (1.2.16) \hat{L}=\hat{r}\times\hat{p}=\hat{r}\times\left(-\mathrm{i}\nabla_{\boldsymbol{r}}\right),\tag{1.2.16} L^=r^×p^=r^×(ir),(1.2.16)
它可以以组件形式写成
L ^ x = − i y ^ ∂ ∂ z + i z ^ ∂ ∂ y , L ^ y = − i z ^ ∂ ∂ x + i x ^ ∂ ∂ z , L ^ z = − i x ^ ∂ ∂ y + i y ^ ∂ ∂ x . (1.2.17) \begin{gathered} \hat{L}_{x} =-\mathrm{i}\hat{y}\frac\partial{\partial z}+\mathrm{i}\hat{z}\frac\partial{\partial y}, \\ \hat{L}_{\boldsymbol{y}} =-\mathrm{i}\hat{z}\frac\partial{\partial x}+\mathrm{i}\hat{x}\frac\partial{\partial z}, \\ \hat{L}_{z} =-\mathrm{i}\hat{x}\frac\partial{\partial y}+\mathrm{i}\hat{y}\frac\partial{\partial x}. \end{gathered}\tag{1.2.17} L^x=iy^z+iz^y,L^y=iz^x+ix^z,L^z=ix^y+iy^x.(1.2.17)
类似于自旋为1-2的粒子,我们定义角动量算符大小的平方为
L ^ 2 : = L ^ x 2 + L ^ y 2 + L ^ z 2 . (1.2.18) \hat{L}^2:=\hat{L}_x^2+\hat{L}_y^2+\hat{L}_z^2.\tag{1.2.18} L^2:=L^x2+L^y2+L^z2.(1.2.18)
此外还有如下关系:
[ L ^ x , L ^ y ] = i L ^ z , [ L ^ y , L ^ z ] = i L ^ x , [ L ^ z , L ^ x ] = i L ^ y . \left[\hat{L}_x,\hat{L}_y\right]=\mathrm{i}\hat{L}_z,\quad\left[\hat{L}_y,\hat{L}_z\right]=\mathrm{i}\hat{L}_x,\quad\left[\hat{L}_z,\hat{L}_x\right]=\mathrm{i}\hat{L}_y. [L^x,L^y]=iL^z,[L^y,L^z]=iL^x,[L^z,L^x]=iL^y.
[ L ^ 2 , L ^ α ] = 0 , α = x , y , z . \left[\hat{L}^2,\hat{L}_\alpha\right]=0,\quad\alpha=x,y,z. [L^2,L^α]=0,α=x,y,z.
我们发现球坐标系中的运算符 L ^ 2 \hat L^2 L^2
L ^ 2 = − 1 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ ∂ θ ) − 1 sin ⁡ 2 θ ∂ 2 ∂ φ 2 . (1.2.19) \hat{L}^2=-\frac1{\sin\theta}\frac\partial{\partial\theta}\left(\sin\theta\frac\partial{\partial\theta}\right)-\frac1{\sin^2\theta}\frac{\partial^2}{\partial\varphi^2}.\tag{1.2.19} L^2=sinθ1θ(sinθθ)sin2θ1φ22.(1.2.19)
特别地, L ^ 2 \hat L^2 L^2仅依赖于角方向θ,φ,而与径向方向无关。
根据附录A.2中的推导,可以使用 变量分离 直接评估^L2的特征值和特征函数。我们有
L ^ 2 Y l m ( θ , φ ) = l ( l + 1 ) Y l m ( θ , φ ) . (1.2.26) \hat{L}^2Y_{lm}\left(\theta,\varphi\right)=l\left(l+1\right)Y_{lm}\left(\theta,\varphi\right).\tag{1.2.26} L^2Ylm(θ,φ)=l(l+1)Ylm(θ,φ).(1.2.26)
这里l∈N和m可以从−l,−l+1,…,l. 本征函数 Y l m Y_{lm} Ylm 仅依赖于θ,φ变量,称为球谐函数。球谐函数是量子物理学中最重要的一类特殊函数,它们为电子结构理论中薛定谔方程的解提供了解和化学直觉。表1.1给出了前几个球谐函数的公式。
在这里插入图片描述
在角动量的一般理论中,任何满足循环关系(1.2.22)的算符都称为角动量算符。从这个角度来看,自旋算符满足循环关系,因此是角动量算符。由于 S ^ 2 = 3 4 I = 1 2 ( 1 2 + 1 ) I , (1.2.27) \hat{S}^2=\frac{3}{4}I=\frac{1}{2}\left(\frac{1}{2}+1\right)I,\tag{1.2.27} S^2=43I=21(21+1)I,(1.2.27)
我们确定,与(1.2.25)相比, S ^ 2 \hat S^2 S^2 l = 1 2 l=\frac{1}{2} l=21的角动量算符大小的平方。

哈密顿算子

在没有磁场的情况下,在势场中具有正质量的粒子在经典力学中的总能量是 E ( x , p ) = p 2 2 + V ( x ) E(x,p)=\frac{p^2}2+V(x) E(x,p)=2p2+V(x)。在量子化过程之后,我们得到了粒子在实直线上的哈密顿量
H ^ = p ^ 2 2 + V ( x ^ ) , \hat{H}=\frac{\hat{p}^2}2+V(\hat{x}), H^=2p^2+V(x^),
其中V(x)被解释为定义为的乘法运算符(a multiplicative operator)
⟨ x ∣ V ( x ^ ) ∣ ψ ⟩ = V ( x ) ψ ( x ) . \langle x|V(\hat{x})|\psi\rangle=V(x)\psi(x). xV(x^)ψ=V(x)ψ(x).
对于位场V的三维粒子,哈密顿算符定义为
H ^ = 1 2 ( p ^ x 2 + p ^ y 2 + p ^ z 2 ) + V ( r ^ ) = − 1 2 Δ r + V ( r ^ ) . (1.2.20) \hat{H}=\frac12\left(\hat{p}_x^2+\hat{p}_y^2+\hat{p}_z^2\right)+V(\hat{r})=-\frac12\Delta_{\boldsymbol{r}}+V(\hat{r}).\tag{1.2.20} H^=21(p^x2+p^y2+p^z2)+V(r^)=21Δr+V(r^).(1.2.20)
这里 Δ r = ∂ x 2 + ∂ y 2 + ∂ z 2 \Delta_{\boldsymbol{r}}=\partial_{x}^2+\partial_{y}^2+\partial_{z}^2 Δr=x2+y2+z2是拉普拉斯算子。
从现在开始,我们将在接下来的讨论中去掉位置、动量、角动量和哈密顿算子的符号,以使符号简洁。所以r,p,L,S,H在必要的时候会被解释为运算符。为了方便对空间坐标分量求和,我们还写了 r = ( x , y , z ) ⊤ ≡ ( r 1 , r 2 , r 3 ) ⊤ r=(x,y,z)^\top\equiv(r_1,r_2,r_3)^\top r=(x,y,z)(r1,r2,r3)。同样, p = ( p x , p y , p z ) ⊤ ≡ ( p 1 , p 2 , p 3 ) ⊤ p=(p_x,p_y,p_z)^\top\equiv(p_1,p_2,p_3)^\top p=(px,py,pz)(p1,p2,p3)。按照这个符号,我们可以把哈密顿量写成
H = − 1 2 Δ r + V ( r ) . (1.2.21) H=-\frac{1}{2}\Delta_{\boldsymbol{r}}+V(r).\tag{1.2.21} H=21Δr+V(r).(1.2.21)
对于(1.2.21)中的哈密顿量,依赖于时间薛定谔方程
i ∂ t ψ ( r , t ) = H ψ ( r , t ) = − 1 2 Δ r ψ ( r , t ) + V ( r ) ψ ( r , t ) . (1.2.22) \text{i}\partial_t\psi(\boldsymbol{r},t)=H\psi(\boldsymbol{r},t) =-\frac12\Delta_{r}\psi(\boldsymbol{r},t)+V(\boldsymbol{r})\psi(\boldsymbol{r},t).\tag{1.2.22} itψ(r,t)=Hψ(r,t)=21Δrψ(r,t)+V(r)ψ(r,t).(1.2.22)
由于哈密顿量H不依赖于时间变量,因此可以通过求解特征值问题找到薛定谔方程的稳态解
( − 1 2 Δ r + V ( r ) ) ψ ( r ) = E ψ ( r ) . (1.2.23) \left(-\frac12\Delta_{\boldsymbol{r}}+V(\boldsymbol{r})\right)\psi(\boldsymbol{r})=E\psi(\boldsymbol{r}).\tag{1.2.23} (21Δr+V(r))ψ(r)=Eψ(r).(1.2.23)
方程(1.2.23)通常被称为与时间无关的薛定谔方程。

1.3氢原子

见LinLin_P18页。

氢原子的哈密顿量采用(1.2.21)的形式: H = − 1 2 Δ r + V ( r ) H=-\frac{1}{2}\Delta_{\boldsymbol{r}}+V(r) H=21Δr+V(r)。为了简化讨论,我们将采用玻恩——奥本海默近似,并将原子核固定在原点。我们注意到,也有可能显式地解决氢原子的完整量子力学描述。势是一个中心对称势,并且只依赖于径向方向as(回想一下r=|r|)
V ( x ) = − 1 r V(x)=-\frac{1}{r} V(x)=r1因此,通过求解本征值问题 -----我们可以找到-----> 氢原子的本征态
即通过薛定谔方程: [ − 1 2 Δ r − 1 r ] ψ ( r ) = E ψ ( r ) . \left[-\frac{1}{2}\Delta_{\boldsymbol{r}}-\frac{1}{r}\right]\psi\left(\boldsymbol{r}\right)=E\psi\left(\boldsymbol{r}\right). [21Δrr1]ψ(r)=Eψ(r).在量子力学中,这样的本征函数 ψ ( r ) ψ(r) ψ(r)也可以互换地称为“轨道”。
使用球坐标变换(1.2.24),拉普拉斯算子采取以下形式

比较上面的关系和(1.2.25),我们发现r与L2算子相关为
由于L2的所有本征函数都可以通过(1.2.26)明确识别,我们可以很容易地使用变量分离来求解(1.3.2)。假设波函数的形式

如果特征值E>0,则u®~—。这种类平面波解不能是平方可积的,因此任何值E>0都不能是孤立的特征值。事实上,氢原子在[0,∞)上有一个连续的光谱。因此,所有具有平方可积特征函数的特征值必须满足E<0。
如果(1.3.10)中的l=0,则可以很容易地找到(1.3.9)的一个解析解u(r)=re^{-r},即,

对于每个特征值En,相应的退化特征函数可以被标记为ψ NLM,其中n,l,m是整数参数。这里,n被称为主量子数(n≥1),l被称为方位角量子数(0≤l≤n-1),m被称为磁量子数(−l≤m≤l)。

在光谱术语中,l=0、1、2、3的球谐函数分别被命名为s、p、d、f轨道。2这些术语也经常用于电子结构理论。因此ψ_100被称为1s轨道(唯一可能的选择是l=0和m=0)。归一化1s轨道的形式为

1.4周期系统

氢原子和H+2系统是孤立系统的典型例子。孤立系统的主要特征是当r→∞时,势V(r)衰减为零。除了孤立系统,电子结构理论中通常研究的另一类重要系统是凝聚态系统,如液体和固体。在这种情况下,V(r)的支撑尺寸在宏观尺度上,因此从电子结构理论的微观角度可以认为是无穷大。虽然凝聚态系统包含宏观数量的电子,但让我们暂时简化讨论,考虑凝聚态系统中的单个电子。从这个角度来看,凝聚态系统只提供背景势V(r),电子的希尔伯特空间仍然由 L 2 ( R 3 ) L^2(R^3) L2R3给出。
凝聚态系统的一个简单例子是结晶固体系统,或简称为晶体。原子位置形成Bravais格 L \mathbb L L,定义为集合
L = { R ∣ R = n 1 a 1 + n 2 a 2 + n 3 a 3 , n 1 , n 2 , n 3 ∈ Z } . (1.4.1) \mathbb{L}=\left\{R\mid R=n_1\boldsymbol{a}_1+n_2\boldsymbol{a}_2+n_3\boldsymbol{a}_3,\quad n_1,n_2,n_3\in\mathbb{Z}\right\}.\tag{1.4.1} L={RR=n1a1+n2a2+n3a3,n1,n2,n3Z}.(1.4.1)
向量 a α a_α aα(α=1,2,3)称为基向量.
如果一个原子在位置R0,那么对于任何R∈L,相同类型的原子必须存在于位置 R 0 + R R_0+R R0+R原子位置的周期性直接反映在势函数中,就像在哈密顿量中一样(1.2.29)。V(r)是关于Bravais晶格的周期函数,即,
4 V ( r ) = V ( r + R ) , ∀ r ∈ R 3 , ∀ R ∈ L . (1.4.2) 4V(\boldsymbol{r})=V(\boldsymbol{r}+\boldsymbol{R}),\quad\forall r\in\mathbb{R}^3,\quad\forall\boldsymbol{R}\in\mathbb{L}.\tag{1.4.2} 4V(r)=V(r+R),rR3,RL.(1.4.2)

区域 Ω = { r = c 1 a 1 + c 2 a 2 + c 3 a 3 , 0 < c 1 , c 2 , c 3 ≤ 1 } (1.4.3) \Omega=\{\boldsymbol{r}=c_1\boldsymbol{a}_1+c_2\boldsymbol{a}_2+c_3\boldsymbol{a}_3,\quad0<c_1,c_2,c_3\leq1\}\tag{1.4.3} Ω={r=c1a1+c2a2+c3a3,0<c1,c2,c31}(1.4.3)称为一个晶胞

正如我们将在下面的讨论中看到的,具有周期势的哈密顿量H不可能有任何孤立的特征值,也就是说,即使我们正式地把特征值分解写成
H ∣ ψ ⟩ = E ∣ ψ ⟩ . H|\psi\rangle=E|\psi\rangle. Hψ=Eψ.
∣ ψ ⟩ |\psi\rangle ψ不能是平方可积函数。尽管如此,本征分解仍然非常有用,并且在物理学文献中常常被称为广义本征函数(generalized eigenfunction).
为了找到H的本征分解,我们首先注意到,即使势是周期性的,本征函数也不一定是周期性的。为了理解这一点,简单地考虑V(r)=0的情况,根据定义,它相对于任意周期是周期性的。然而, H = − 1 2 Δ H=-\frac{1}2\Delta H=21Δ的本征函数是平面波,不一定是具有任意周期的周期函数。
对于给定的R∈L,定义平移算子 T R : L 2 ( R 3 ) → L 2 ( R 3 ) , ( T R f ) ( r ) = f ( r + R ) . T_R:L^2(\mathbb{R}^3)\to L^2(\mathbb{R}^3),\quad(T_Rf)(r)=f(r+R). TR:L2(R3)L2(R3),(TRf)(r)=f(r+R).
V的周期性质意味着 [ T R , H ] = 0 [T_R,H]=0 [TR,H]=0,因此 T R T_R TR H H H可以同时对角化。形式上,取任何特征向量 ψ \psi ψ,使得
H ψ = E ψ , T R ψ = C R ψ . (1.4.4) H\psi=E\psi,\quad T_{R}\psi=C_{R}\psi.\tag{1.4.4} Hψ=Eψ,TRψ=CRψ.(1.4.4)
因此 ψ ( r + R ) = C R ψ ( r ) \psi(r+R)=C_R \psi(r) ψr+R=CRψr。此外,
ψ ( r + R + R ′ ) = C R ψ ( r + R ′ ) = C R C R ′ ψ ( r ) = C R + R ′ ψ ( r ) . (1.4.5) \psi(r+R+R^{\prime})=C_{\boldsymbol{R}}\psi(r+R^{\prime})=C_{\boldsymbol{R}}C_{\boldsymbol{R}^{\prime}}\psi(r)=C_{\boldsymbol{R}+\boldsymbol{R}^{\prime}}\psi(r).\tag{1.4.5} ψ(r+R+R)=CRψ(r+R)=CRCRψ(r)=CR+Rψ(r).(1.4.5)
一般来说,方程的解
C R + R ′ = C R C R ′ ∀ R , R ′ ∈ L . (1.4.6) C_{\boldsymbol{R}+\boldsymbol{R}^{\prime}}=C_{\boldsymbol{R}}C_{\boldsymbol{R}^{\prime}}\quad\forall R,R^{\prime}\in\mathbb{L}.\tag{1.4.6} CR+R=CRCRR,RL.(1.4.6)
是单色平面波
C R = e i R ⋅ k  for some  k ∈ R 3 . (1.4.7) C_{\boldsymbol{R}}=e^{\mathrm{i}\boldsymbol{R}\cdot\boldsymbol{k}}\quad\text{ for some }k\in\mathbb{R}^{3}.\tag{1.4.7} CR=eiRk for some kR3.(1.4.7)因此,φ对于R可能不是周期的,但满足扭曲边界条件(也称为Bloch边界条件)
ψ ( r + R ) = e i k ⋅ R ψ ( r ) . (1.4.8) \psi(\boldsymbol{r}+\boldsymbol{R})=e^{\mathbf{i}\boldsymbol{k}\cdot\boldsymbol{R}}\psi(\boldsymbol{r}).\tag{1.4.8} ψ(r+R)=eikRψ(r).(1.4.8)
再把变量 ψ \psi ψ换成u
ψ ( r ) = e i k ⋅ r u ( r ) . (1.4.9) \psi(\boldsymbol{r})=e^{\mathbf{i}\boldsymbol{k}\cdot\boldsymbol{r}}u(\boldsymbol{r}).\tag{1.4.9} ψ(r)=eikru(r).(1.4.9)
于是
e i k ⋅ ( r + R ) u ( r + R ) = ψ ( r + R ) = e i k ⋅ R ψ ( r ) = e i k ⋅ R e i k ⋅ r u ( r ) . (1.4.10) e^{\mathrm{i}\boldsymbol{k}\cdot(\boldsymbol{r}+\boldsymbol{R})}u(r+\boldsymbol{R})=\psi(\boldsymbol{r}+\boldsymbol{R})=e^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{R}}\psi(\boldsymbol{r})=e^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{R}}e^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}}u(\boldsymbol{r}).\tag{1.4.10} eik(r+R)u(r+R)=ψ(r+R)=eikRψ(r)=eikReikru(r).(1.4.10)
因此u(r)=u(r+R),即u相对于r是周期性的。
由于V和u都是周期的,所以只有在单胞Ω中才能求解u(r)的方程。

1.5张量积空间:两个自旋为1/2的粒子

描述包含一个以上粒子的量子系统的方法是希尔伯特空间的张量积。为了简单起见,我们只考虑有限维希尔伯特空间。设 H A , H B \mathcal H_A,\mathcal H_B HAHB分别是维数为 N A , N B N_A,N_B NANB的两个Hilbert空间, { ∣ φ i A ⟩ } i = 1 N A , { ∣ φ j B ⟩ } j = 1 N B \{|\varphi_{i}^{A}\rangle\}_{i=1}^{N_{A}},\{|\varphi_{j}^{B}\rangle\}_{j=1}^{N_{B}} {φiA}i=1NA,{φjB}j=1NB是对应的基集。
张量积空间定义为
H A ⊗ H B = span ⁡ { ∣ φ i A φ j B ⟩ ∣ i = 1 , … , N A , j = 1 , … , N B } . (1.5.1) \mathcal{H}_A\otimes\mathcal{H}_B=\operatorname{span}\Bigl\{|\varphi_i^A\varphi_j^B\rangle\bigg|i=1,\ldots,N_A,j=1,\ldots,N_B\Bigr\}.\tag{1.5.1} HAHB=span{φiAφjB i=1,,NA,j=1,,NB}.(1.5.1)
这里 { ∣ φ i A φ j B ⟩ } \{|\varphi_i^A\varphi_j^B\rangle\} {φiAφjB⟩}形成一个新的基础集,在内积下是正交
⟨ φ i A φ j B ∣ φ i ′ A φ j ′ B ⟩ = ⟨ φ i A ∣ φ i ′ A ⟩ ⟨ φ j B ∣ φ j ′ B ⟩ = δ i , i ′ δ j , j ′ . \langle\varphi_i^A\varphi_j^B|\varphi_{i'}^A\varphi_{j'}^B\rangle=\langle\varphi_i^A|\varphi_{i'}^A\rangle\langle\varphi_j^B|\varphi_{j'}^B\rangle=\delta_{i,i'}\delta_{j,j'}. φiAφjBφiAφjB=φiAφiAφjBφjB=δi,iδj,j.
如果 A ^ , B ^ \hat A,\hat B A^,B^ H A 、 H B \mathcal H_A、\mathcal H_B HAHB上的 线性算子,则作用于任意基向量 ∣ φ i A φ j B ⟩ |\varphi_i^A\varphi_j^B\rangle φiAφjB张量积 A ^ ⊗ B ^ \hat A \otimes \hat B A^B^被定义为
( A ^ ⊗ B ^ ) ∣ φ i A φ j B ⟩ = ∣ ( A ^ φ i A ) ( B ^ φ j B ) ⟩ . (1.5.2) (\hat{A}\otimes\hat{B})|\varphi_i^A\varphi_j^B\rangle=|(\hat{A}\varphi_i^A)(\hat{B}\varphi_j^B)\rangle.\tag{1.5.2} (A^B^)φiAφjB=(A^φiA)(B^φjB)⟩.(1.5.2)
例如,考虑两个自旋为1/2的粒子, 每个粒子的希尔伯特空间,用 H = s p a n { ∣ ↑ ⟩ , ∣ ↓ ⟩ } , \mathcal H=\mathrm{span}\left\{|\uparrow\rangle,|\downarrow\rangle\right\}, H=span{,}, 表示,同构于C2,因此乘积空间同构于 C 2 ⊗ C 2 ≅ C 4 \mathbb{C}^2\otimes\mathbb{C}^2\cong\mathbb{C}^4 C2C2C4
H^H的基集(basis set) 由下式给出
∣ ↑ A ↑ B ⟩ , ∣ ↑ A ↓ B ⟩ , ∣ ↓ A ↑ B ⟩ , ∣ ↓ A ↓ B ⟩ , |\uparrow_A\uparrow_B\rangle,|\uparrow_A\downarrow_B\rangle,|\downarrow_A\uparrow_B\rangle,|\downarrow_A\downarrow_B\rangle, AB,AB,AB,AB,
简化为 { ∣ ↑ ↑ ⟩ , ∣ ↑ ↓ ⟩ , ∣ ↓ ↑ ⟩ , ∣ ↓ ↓ ⟩ } . \{|\uparrow\uparrow\rangle,|\uparrow\downarrow\rangle,|\downarrow\uparrow\rangle,|\downarrow\downarrow\rangle\}. {↑↑,↑↓,↓↑,↓↓⟩}.
乘积空间上沿z方向的自旋算子可以定义为
S z ( 1 ) = S z ⊗ I , S z ( 2 ) = I ⊗ S z (1.5.3) S_z^{(1)}=S_z\otimes I,\quad S_z^{(2)}=I\otimes S_z\tag{1.5.3} Sz(1)=SzI,Sz(2)=ISz(1.5.3)
沿着z方向的全自旋算符是
S z t o t = S z ( 1 ) + S z ( 2 ) . (1.5.4) S_z^{\mathrm{tot}}=S_z^{(1)}+S_z^{(2)}.\tag{1.5.4} Sztot=Sz(1)+Sz(2).(1.5.4)
类似的我们可以计算出x,y方向上的 全自旋算符,从而有
( S t o t ) 2 = ( S x t o t ) 2 + ( S y t o t ) 2 + ( S z t o t ) 2 . \left(S^{\mathrm{tot}}\right)^2=\left(S_x^{\mathrm{tot}}\right)^2+\left(S_y^{\mathrm{tot}}\right)^2+\left(S_z^{\mathrm{tot}}\right)^2. (Stot)2=(Sxtot)2+(Sytot)2+(Sztot)2.
下面我们证明了两个自旋为1/2的粒子的张量积空间可以用 S z t o t S^{tot}_z Sztot ( S t o t ) 2 (Stot)^2 (Stot)2的公共本征函数显式分类。首先,我们计算作用于四个基函数的 S z t o t S^{tot}_z Sztot,如下所示
S z t o t ∣ ↑ ↑ ⟩ = S z ⊗ I ∣ ↑ ↑ ⟩ + I ⊗ S z ∣ ↑ ↑ ⟩ = 1 2 ∣ ↑ ↑ ⟩ + 1 2 ∣ ↑ ↑ ⟩ = ∣ ↑ ↑ ⟩ , S z t o t ∣ ↓ ↓ ⟩ = − ∣ ↓ ↓ ⟩ , S z t o t ∣ ↓ ↑ ⟩ = S z ⊗ I ∣ ↓ ↑ ⟩ + I ⊗ S z ∣ ↓ ↑ ⟩ = − 1 2 ∣ ↓ ↑ ⟩ + 1 2 ∣ ↓ ↑ ⟩ = ∣ 0 ⟩ , S z t o t ∣ ↑ ↓ ⟩ = ∣ 0 ⟩ . \begin{aligned} &S_{z}^{\mathrm{tot}}|\uparrow\uparrow\rangle =S_{z}\otimes I|\uparrow\uparrow\rangle+I\otimes S_{z}|\uparrow\uparrow\rangle=\frac{1}{2}|\uparrow\uparrow\rangle+\frac{1}{2}|\uparrow\uparrow\rangle=|\uparrow\uparrow\rangle, \\ &S_z^{\mathrm{tot}}|\downarrow\downarrow\rangle =-|\downarrow\downarrow\rangle, \\ &S_{z}^{\mathrm{tot}}|\downarrow\uparrow\rangle =S_z\otimes I|\downarrow\uparrow\rangle+I\otimes S_z|\downarrow\uparrow\rangle=-\frac12|\downarrow\uparrow\rangle+\frac12|\downarrow\uparrow\rangle=|0\rangle, \\ &S_{z}^{\mathrm{tot}}|\uparrow\downarrow\rangle =|0\rangle. \end{aligned} Sztot↑↑=SzI↑↑+ISz↑↑=21↑↑+21↑↑=↑↑,Sztot↓↓=↓↓,Sztot↓↑=SzI↓↑+ISz↓↑=21↓↑+21↓↑=∣0,Sztot↑↓=∣0.
因此,张量乘积空间的所有基向量都是 S z t o t S^{tot}_z Sztot的本征态。类似地,可以评估作用于基向量的Stot x和Stot y。

总自旋算符(Stot)2的大小的平方需要进一步计算:

( S z t o t ) 2 = ( S z ⊗ I ) 2 + ( S z ⊗ I ) ( I ⊗ S z ) + ( I ⊗ S z ) ( S z ⊗ I ) + ( I ⊗ S z ) 2 = 1 2 I ⊗ I + 2 S z ⊗ S z , \begin{aligned}(S_{z}^{\mathrm{tot}})^{2}&=(S_z\otimes I)^2+(S_z\otimes I)(I\otimes S_z)+(I\otimes S_z)(S_z\otimes I)+(I\otimes S_z)^2\\&=\frac12I\otimes I+2S_z\otimes S_z,\end{aligned} (Sztot)2=(SzI)2+(SzI)(ISz)+(ISz)(SzI)+(ISz)2=21II+2SzSz,
于是, ( S t o t ) 2 = 3 2 I ⊗ I + 2 S x ⊗ S x + 2 S y ⊗ S y + 2 S z ⊗ S z . \left(S^{\mathrm{tot}}\right)^2=\frac{3}{2}I\otimes I+2S_x\otimes S_x+2S_y\otimes S_y+2S_z\otimes S_z. (Stot)2=23II+2SxSx+2SySy+2SzSz.
我们可以发现,
[ ( S t o t ) 2 , S z t o t ] = 0. (1.5.5) \left[\left(S^{\mathrm{tot}}\right)^2,S_z^{\mathrm{tot}}\right]=0.\tag{1.5.5} [(Stot)2,Sztot]=0.(1.5.5)
因此,(Stot)2和STOTZ可以同时对角化。更具体地说,
( S t o t ) 2 ∣ ↑ ↑ ⟩ = 2 ∣ ↑ ↑ ⟩ , ( S t o t ) 2 ∣ ↓ ↓ ⟩ = 2 ∣ ↓ ↓ ⟩ . (S^{\mathrm{tot}})^2|\uparrow\uparrow\rangle=2|\uparrow\uparrow\rangle,\quad(S^{\mathrm{tot}})^2|\downarrow\downarrow\rangle=2|\downarrow\downarrow\rangle. (Stot)2↑↑=2∣↑↑,(Stot)2↓↓=2∣↓↓.
另一方面,↑↓>和↓↑>不是(Stot)2的本征态。相反,
( S t o t ) 2 ( 1 2 ∣ ↑ ↓ ⟩ + 1 2 ∣ ↓ ↑ ⟩ ) = 2 ( 1 2 ∣ ↑ ↓ ⟩ + 1 2 ∣ ↓ ↑ ⟩ ) , ( S t o t ) 2 ( 1 2 ∣ ↑ ↓ ⟩ − 1 2 ∣ ↓ ↑ ⟩ ) = 0. (1.5.7) \begin{aligned}&(S^{\mathrm{tot}})^2\left(\frac1{\sqrt{2}}|\uparrow\downarrow\rangle+\frac1{\sqrt{2}}|\downarrow\uparrow\rangle\right)=2\left(\frac1{\sqrt{2}}|\uparrow\downarrow\rangle+\frac1{\sqrt{2}}|\downarrow\uparrow\rangle\right),\\&(S^{\mathrm{tot}})^2\left(\frac1{\sqrt{2}}|\uparrow\downarrow\rangle-\frac1{\sqrt{2}}|\downarrow\uparrow\rangle\right)=0.\end{aligned}\tag{1.5.7} (Stot)2(2 1↑↓+2 1↓↑)=2(2 1↑↓+2 1↓↑),(Stot)2(2 1↑↓2 1↓↑)=0.(1.5.7)
因此,算子(Stot)2可用于区分对应于由简并本征态↑↓>和↓↑>跨越的本征值0的Stot z的本征空间。总之,算子(Stot)2具有单个特征值0,称为单重态,以及三重简并特征值2,称为三重态。可以使用运算符Stot z进一步区分三重态。(Stot)2和Stot z的特征值和特征向量总结在表1.2中。
State Type ( S t o t ) 2 S z t o t 1 2 ( ∣ ↑ ↓ ⟩ − ∣ ↓ ↑ ⟩ ) singlet 0 0 ∣ ↑ ↑ ⟩ 1 1 2 ( ∣ ↑ ↓ ⟩ + ∣ ↓ ↑ ⟩ ) triplet 2 0 ∣ ↓ ↓ ⟩ − 1 \begin{array}{llll}\hline\text{State}&\text{Type}&\left(S^{\mathrm{tot}}\right)^2&S_z^{\mathrm{tot}}\\\hline\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle)&\text{singlet}&0&0\\\hline|\uparrow\uparrow\rangle&&&1\\\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle)&\text{triplet}&2&0\\|\downarrow\downarrow\rangle&&&-1 \\\hline \end{array} State2 1(↑↓↓↑⟩)↑↑2 1(↑↓+↓↑⟩)↓↓Typesinglettriplet(Stot)202Sztot0101


1.6相同粒子

双粒子量子系统

到目前为止,我们的讨论涉及空间自由度(连续或离散)或自旋自由度。现在让我们考虑空间和自旋自由度在一起。对于实空间中的自旋相关量子粒子,状态空间
H = L 2 ( R 3 ; C 2 ) : = { ψ ( r , σ ) ∣ ∑ σ ∈ { ↑ , ↓ } ∫ R 3 ∣ ψ ( r , σ ) ∣ 2 d ⁡ r < ∞ } . (1.6.1) \mathcal{H}=L^2(\mathbb{R}^3;\mathbb{C}^2):=\left\{\psi(r,\sigma)\left|\sum_{\sigma\in\{\uparrow,\downarrow\}}\int_{\mathbb{R}^3}\lvert\psi(r,\sigma)\rvert^2\operatorname{d}r<\infty\right.\right\}.\tag{1.6.1} H=L2(R3;C2):= ψ(r,σ) σ{,}R3ψ(r,σ)2dr< .(1.6.1)
我们经常使用x=(r,σ)来统称空间变量和自旋变量。我们还介绍了符号

则状态空间H可以写成

让我们考虑一个有两个量子粒子的系统。每个状态向量|Ψ>在张量乘积空间 H ⊗ H \mathcal H\otimes \mathcal H HH中,其中 H = L 2 ( R 3 ; C 2 ) \mathcal H=L^2(R^3;C^2) H=L2(R3C2).波函数是 Ψ ( x 1 , x 2 ) = < x 1 , x 2 ∣ Ψ > Ψ(x1,x2)=<x_1,x_2 |Ψ> Ψ(x1x2)=<x1x2∣Ψ>,其中xi=(ri,σ i)表示第i个粒子的集体空间和自旋变量。同样,由于符号的一些滥用,我们可能无法区分状态向量|Ψ>及其相关的波函数Ψ(x1,x2)。如果我们交换两个粒子的指数,那么波函数就变成Ψ(x2,x1)。这可以使用置换算子 P 12 P_{12} P12,定义为 ⟨ x 1 , x 2 ∣ P 12 ∣ Ψ ⟩ = Ψ ( x 2 , x 1 ) . \langle x_1,x_2|P_{12}|\Psi\rangle=\Psi(x_2,x_1). x1,x2P12∣Ψ=Ψ(x2,x1).
我们可以立即证实: P 12 = I P_{12}=I P12=I,
于是有 ⟨ x 1 , x 2 ∣ P i j 2 ∣ Ψ ⟩ = Ψ ( x 1 , x 2 ) . (1.6.2) \langle x_1,x_2|P_{ij}^2|\Psi\rangle=\Psi(x_1,x_2).\tag{1.6.2} x1,x2Pij2∣Ψ=Ψ(x1,x2).(1.6.2)
(再结合上述两个式子有)
因此,置换算子P12的特征值必须为±1。此外,如果哈密顿量H与P12交换,那么可以找到Ψ>,使得它同时是H和P12的本征态,即,
H ∣ Ψ ⟩ = E ∣ Ψ ⟩ , P 12 ∣ Ψ ⟩ = ± ∣ Ψ ⟩ . H|\Psi\rangle=E|\Psi\rangle,\quad P_{12}|\Psi\rangle=\pm|\Psi\rangle. H∣Ψ=E∣Ψ,P12∣Ψ=±∣Ψ.

如果符号是+,则Ψ>是对称函数
Ψ ( x 1 , x 2 ) = Ψ ( x 2 , x 1 ) . \Psi(x_1,x_2)=\Psi(x_2,x_1). Ψ(x1,x2)=Ψ(x2,x1).
这被称为玻色子态。如果符号是−,则Ψ>是反对称函数
Ψ ( x 1 , x 2 ) = − Ψ ( x 2 , x 1 ) . \Psi(x_1,x_2)=-\Psi(x_2,x_1). Ψ(x1,x2)=Ψ(x2,x1).
这被称为费米子态

Example: Helium atom


示例:氦原子

氦原子的哈密顿量(系统有两个带原子核电荷为2的电子)为
H = − 1 2 Δ r 1 − 1 2 Δ r 2 − 2 ∣ r 1 ∣ − 2 ∣ r 2 ∣ + 1 ∣ r 1 − r 2 ∣ . (1.6.3) H=-\frac{1}{2}\Delta_{\boldsymbol{r}_1}-\frac{1}{2}\Delta_{\boldsymbol{r}_2}-\frac{2}{|\boldsymbol{r}_1|}-\frac{2}{|\boldsymbol{r}_2|}+\frac{1}{|\boldsymbol{r}_1-\boldsymbol{r}_2|}.\tag{1.6.3} H=21Δr121Δr2r12r22+r1r21.(1.6.3)
虽然哈密顿量没有明确涉及自旋算符,但波函数涉及空间和自旋自由度:
Ψ ( x 1 , x 2 ) ≡ Ψ ( ( r 1 , σ 1 ) , ( r 2 , σ 2 ) ) . \Psi(x_1,x_2)\equiv\Psi\left((r_1,\sigma_1),(r_2,\sigma_2)\right). Ψ(x1,x2)Ψ((r1,σ1),(r2,σ2)).
电子的波函数|Ψ>总是费米子态,并且在空间 A 2 = ⋀ 2 L 2 ( R 3 ; C 2 ) , A^2=\bigwedge^2L^2(\mathbb{R}^3;\mathbb{C}^2), A2=2L2(R3;C2),中,它由张量积空间 L 2 ( R 3 ; C 2 ) ⊗ L 2 ( R 3 ; C 2 ) L^2(R^3;C^2)\otimes L^2(R^3;C^2) L2(R3C2)L2(R3C2)中的所有反对称函数组成。

由于哈密顿量没有明确涉及自旋自由度,我们有
[ ( S t o t ) 2 , H ] = 0 , [ S z t o t , H ] = 0. (1.6.4) \begin{bmatrix}(S^{\mathrm{tot}})^2,H\end{bmatrix}=0,\quad\begin{bmatrix}S_z^{\mathrm{tot}},H\end{bmatrix}=0.\tag{1.6.4} [(Stot)2,H]=0,[Sztot,H]=0.(1.6.4)
那么 ∣ Ψ > |Ψ> ∣Ψ>必须同时是 ( S t o t ) 2 (S^{tot})^2 (Stot)2 S Z t o t S^{tot}_Z SZtot和H的本征态,我们可以通过将空间和自旋自由度分离
Ψ ( x 1 , x 2 ) = φ ( r 1 , r 2 ) χ ( σ 1 , σ 2 ) . (1.6.5) \Psi(\boldsymbol{x}_1,\boldsymbol{x}_2)=\varphi(\boldsymbol{r}_1,\boldsymbol{r}_2)\chi(\sigma_1,\sigma_2).\tag{1.6.5} Ψ(x1,x2)=φ(r1,r2)χ(σ1,σ2).(1.6.5)
根据1.5节的讨论, χ \chi χ必须是反对称函数(自旋单重态)或对称函数(自旋三重态)。由于整个波函数必须是反对称的,如果χ是自旋单峰,那么空间波函数φ必须是对称的(即玻色子形式的),反之亦然。更具体地,如果 χ \chi χ是自旋单线态,即,
χ ( σ 1 , σ 2 ) = χ S ( σ 1 , σ 2 ) : = 1 2 ( ⟨ σ 1 σ 2 ∣ ↑ ↓ ⟩ − ⟨ σ 1 σ 2 ∣ ↓ ↑ ⟩ ) , \chi(\sigma_1,\sigma_2)=\chi_S(\sigma_1,\sigma_2):=\frac{1}{\sqrt{2}}\big(\langle\sigma_1\sigma_2|\uparrow\downarrow\rangle-\langle\sigma_1\sigma_2|\downarrow\uparrow\rangle\big), χ(σ1,σ2)=χS(σ1,σ2):=2 1(σ1σ2↑↓σ1σ2↓↑),
然后,空间自由度的最简单对称波函数采用因式分解形式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值