l l l阶贝塞尔函数(常见于球对称问题中)通常是通过解贝塞尔微分方程得到的。该方程如下:
x 2 d 2 y d x 2 + 2 x d y d x + ( x 2 − l ( l + 1 ) ) y = 0 x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} + \left( x^2 - l(l+1) \right) y = 0 x2dx2d2y+2xdxdy+(x2−l(l+1))y=0
这里 l l l是阶数。这个方程的解为 y ( x ) = c 1 j l ( x ) + c 2 y l ( x ) y(x)=c_1j_l(x)+c_2y_l(x) y(x)=c1jl(x)+c2yl(x),其中第一类贝塞尔函数 j l ( x ) j_l(x) jl(x)和第二类球贝塞尔函数 y l ( x ) y_l(x) yl(x)具体形式如下。
1. 第一类贝塞尔函数 j l ( x ) j_l(x) jl(x)
第一类球贝塞尔函数 j l ( x ) j_l(x) jl(x)是无奇点的解,通常写作:
j l ( x ) ≈ ∑ n = 0 N ( − 1 ) n ( x / 2 ) l + 2 n n ! ( l + n ) ! j_l(x) \approx \sum_{n=0}^{N} (-1)^n \frac{(x/2)^{l+2n}}{n!(l+n)!} jl(x)≈n=0∑N(−1)nn!(l+n)!(x/2)l+2n
具体的 j l ( x ) j_l(x) jl(x)表达式如下:
- j 0 ( x ) = sin x x j_0(x) = \frac{\sin x}{x} j0(x)=xsinx
- j 1 ( x ) = sin x x 2 − cos x x j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x} j1(x)=x2sinx−xcosx
- j 2 ( x ) = ( 3 x 2 − 1 ) sin x x − 3 cos x x 2 j_2(x) = \left( \frac{3}{x^2} - 1 \right) \frac{\sin x}{x} - \frac{3 \cos x}{x^2} j2(x)=(x23−1)xsinx−x23cosx
这些函数表示的是无奇点的球面波的径向分布,通常用于球坐标下的波动方程解中。
2. 第二类贝塞尔函数 y l ( x ) y_l(x) yl(x)
第二类球贝塞尔函数 y l ( x ) y_l(x) yl(x)为 j l ( x ) j_l(x) jl(x)和 j − l ( x ) j_{-l}(x) j−l(x)的线性组合:
y l ( x ) = j l ( x ) c o s ( α x ) − j − l ( x ) s i n ( α x ) y_l(x)=\frac{j_l(x)cos(\alpha x)-j_{-l}(x)}{sin(\alpha x)} yl(x)=sin(αx)jl(x)cos(αx)−j−l(x)
具体的 y l ( x ) y_l(x) yl(x)表达式如下:
- y 0 ( x ) = − cos x x y_0(x) = -\frac{\cos x}{x} y0(x)=−xcosx
- y 1 ( x ) = − cos x x 2 − sin x x y_1(x) = -\frac{\cos x}{x^2} - \frac{\sin x}{x} y1(x)=−x2cosx−xsinx
- y 2 ( x ) = − ( 3 x 2 − 1 ) cos x x − 3 sin x x 2 y_2(x) = -\left( \frac{3}{x^2} - 1 \right) \frac{\cos x}{x} - \frac{3 \sin x}{x^2} y2(x)=−(x23−1)xcosx−x23sinx
第二类球贝塞尔函数通常用于描述球坐标系中具有辐射条件的解。