【高阶数据结构】图--邻接矩阵、邻接表、BFS、DFS、Kruskal、Prime


一、图的概述

1、概述(纯理论部分)

图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E),其中:
顶点集合V = {x|x属于某个数据对象集}是有穷非空集合
E = {(x,y)|x,y属于V}或者E = {<x, y>|x,y属于V && Path(x, y)}是顶点间关系的有穷集合,也叫做边的集合。
(x, y)表示x到y的一条双向通路,即(x, y)是无方向的;Path(x, y)表示从x到y的一条单向通路,即Path(x, y)是有方向的。
顶点和边:图中结点称为顶点,第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边,图中的第k条边记作ek,ek = (vi,vj)或<vi,vj>。
有向图和无向图:在有向图中,顶点对<x, y>是有序的,顶点对<x,y>称为顶点x到顶点y的一条边(弧),<x, y>和<y, x>是两条不同的边,比如下图G3和G4为有向图。在无向图中,顶点对(x, y)是无序的,顶点对(x,y)称为顶点x和顶点y相关联的一条边,这条边没有特定方向,(x, y)和(y,x)是同一条边,比如下图G1和G2为无向图。注意:无向边(x, y)等于有向边<x, y>和<y, x>。

在这里插入图片描述
完全图:在有n个顶点的无向图中,若有n * (n-1)/2条边,即任意两个顶点之间有且仅有一条边,则称此图为无向完全图,比如上图G1;在n个顶点的有向图中,若有n * (n-1)条边,即任意两个顶点之间有且仅有方向相反的边,则称此图为有向完全图,比如上图G4。
邻接顶点:在无向图中G中,若(u, v)是E(G)中的一条边,则称u和v互为邻接顶点,并称边(u,v)依附于顶点u和v;在有向图G中,若<u, v>是E(G)中的一条边,则称顶点u邻接到v,顶点v邻接自顶点u,并称边<u, v>与顶点u和顶点v相关联。
顶点的度:顶点v的度是指与它相关联的边的条数,记作deg(v)。在有向图中,顶点的度等于该顶点的入度与出度之和,其中顶点v的入度是以v为终点的有向边的条数,记作indev(v);顶点v的出度是以v为起始点的有向边的条数,记作outdev(v)。因此:dev(v) = indev(v) + outdev(v)。注
意:对于无向图,顶点的度等于该顶点的入度和出度,即dev(v) = indev(v) = outdev(v)。
路径:在图G = (V, E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径。
路径长度:对于不带权的图,一条路径的路径长度是指该路径上的边的条数;对于带权的图,一条路径的路径长度是指该路径上各个边权值的总和。

2、邻接矩阵(实现一个添加边的图)

(1)思路介绍

我们既然要实现有边有顶点的图,那么必然我们需要先创建一个顶点的集合,顶点和坐标的映射关系以及邻接矩阵的。

我们首先需要实现的是构造函数用的是手动添加边,也就是将我们的顶点集合和邻接矩阵进行扩容至相对应的大小,并且用顶点和坐标的映射关系在进行扩容的过程中进行添加。其次我们就需要添加边了,也就是我们先要得到边的下标(这里直接用顶点和下标关系这个成员函数进行返回即可),无向图就加两次,有向图只用加当前的边即可。最后进行测试即可。

(2)代码部分

// Graph.h
#pragma once
#include <iostream>
#include <vector>
#include <map>

namespace matrix
{
	template<class V, class W, W MAX_W = INT_MAX, bool Direct = false>
	class Graph
	{
	private:
		std::vector<V> _vertex; // 顶点集合
		std::map<V, int> _indexMap; // 顶点映射下标关系
		std::vector<std::vector<W>> _matrix; // 邻接矩阵
	public:
		// 手动添加边
		Graph(const V* a, size_t n) // 边和大小
		{
			_vertex.reserve(n); // 先将顶点扩大到n个大小
			for (size_t i = 0; i < n; i++)
			{
				_vertex.push_back(a[i]); // 插入这条边
				_indexMap[a[i]] = i; // 映射关系
			}
			_matrix.resize(n); // 先将这第一行给设置n个大小
			for (int i = 0; i < _matrix.size(); i++)
			{
				_matrix[i].resize(n, MAX_W); // 之后的每一行都进行扩容
			}
		}
		// 得到顶点下标
		size_t GetIndex(const V& v)
		{
			auto it = _indexMap.find(v);
			if (it != _indexMap.end())
			{
				return it->second;
			}
			else
			{
				return -1;
			}
		}
		// 添加边
		void AddEdge(const V& src, const V& dst, const W& w)
		{
			size_t srci = GetIndex(src);
			size_t dsti = GetIndex(dst);
			_matrix[srci][dsti] = w;
			// 无向图(要添加两次)
			if (Direct == false)
			{
				_matrix[dsti][srci] = w;
			}
			// return ;
		}
		// 打印
		void Print()
		{
			// 先打印顶点
			for (int i = 0; i < _vertex.size(); i++)
			{
				std::cout << "[" << i << "]" << _vertex[i] << std::endl;
			}
			std::cout << std::endl;
			// 再打印矩阵
			// 横坐标
			std::cout << "  ";
			for (int i = 0; i < _matrix.size(); i++)
			{
				std::cout << i << " ";
			}
			std::cout << std::endl;
			for (int i = 0; i < _matrix.size(); i++)
			{
				std::cout << i << " ";
				for (int j = 0; j < _matrix[i].size(); j++)
				{
					if (_matrix[i][j] == MAX_W)
					{
						std::cout << "* ";
					}
					else
					{
						std::cout << _matrix[i][j] << " ";
					}
				}
				std::cout << std::endl;
			}
			std::cout << std::endl;
		}
	};
	void TestGraph1()
	{
		Graph<char, int, INT_MAX, true> g("0123", 4);
		g.AddEdge('0', '1', 1);
		g.AddEdge('0', '3', 4);
		g.AddEdge('1', '3', 2);
		g.AddEdge('1', '2', 9);
		g.AddEdge('2', '3', 8);
		g.AddEdge('2', '1', 5);
		g.AddEdge('2', '0', 3);
		g.AddEdge('3', '2', 6);
		g.Print();
	}
}

(3)测试部分

在这里插入图片描述

3、邻接表(只实现出度表)

(1)思路介绍

(2)代码部分

namespace link_table
{
	template<class W>
	struct Edge
	{
		int _dsti; // 出度的目标点
		W _w;     // 权值
		Edge<W>* _next; // 链接下一个指针

		Edge(int dsti, const W& w)
			: _dsti(dsti)
			, _w(w)
			, _next(nullptr)
		{}
	};
	template<class V, class W, bool Direct = false>
	class Graph
	{
		typedef Edge<W> Edge;
	private:
		std::vector<V> _vertex;		// 顶点集合
		std::map<V, int> _indexMap; // 顶点映射下标关系
		std::vector<Edge*> _tables; // 邻接表--类似哈希表
	public:
		// 手动添加边
		Graph(const V* a, size_t n) // 边和大小
		{
			_vertex.reserve(n); // 先将顶点扩大到n个大小
			for (size_t i = 0; i < n; i++)
			{
				_vertex.push_back(a[i]); // 插入这条边
				_indexMap[a[i]] = i; // 映射关系
			}
			_tables.resize(n, nullptr);
		}
		// 得到顶点下标
		size_t GetIndex(const V& v)
		{
			auto it = _indexMap.find(v);
			if (it != _indexMap.end())
			{
				return it->second;
			}
			else
			{
				return -1;
			}
		}
		// 添加边
		void AddEdge(const V& src, const V& dst, const W& w)
		{
			size_t srci = GetIndex(src);
			size_t dsti = GetIndex(dst);

			Edge* eg = new Edge(dsti, w); // 先new一个结点
			eg->_next = _tables[srci];
			_tables[srci] = eg;

			// 对于无向图来讲
			if (Direct == false)
			{
				Edge* eg = new Edge(srci, w); // 先new一个结点
				eg->_next = _tables[dsti];
				_tables[dsti] = eg;
			}
		}
		// 打印
		void Print()
		{
			// 先打印顶点
			for (int i = 0; i < _vertex.size(); i++)
			{
				std::cout << "[" << i << "]" << _vertex[i] << std::endl;
			}
			std::cout << std::endl;
			for (int i = 0; i < _tables.size(); i++)
			{
				std::cout << _vertex[i] << "[" << i << "]->";
				Edge* cur = _tables[i];
				while (cur)
				{
					std::cout << _vertex[cur->_dsti] << "[" << cur->_dsti << "]" << "w:" << cur->_w << "->";
					cur = cur->_next;
				}
				std::cout << "nullptr" << std::endl;
			}
			std::cout << std::endl;
		}
	};
	void TestGraph1()
	{
		std::string a[] = { "张三", "李四", "王五", "赵六" };
		Graph<std::string, int, false> g1(a, 4);
		g1.AddEdge("张三", "李四", 100);
		g1.AddEdge("张三", "王五", 200);
		g1.AddEdge("王五", "赵六", 30);
		/*Graph<char, int, true> g("0123", 4);
		g.AddEdge('0', '1', 1);
		g.AddEdge('0', '3', 4);
		g.AddEdge('1', '3', 2);
		g.AddEdge('1', '2', 9);
		g.AddEdge('2', '3', 8);
		g.AddEdge('2', '1', 5);
		g.AddEdge('2', '0', 3);
		g.AddEdge('3', '2', 6);*/
		g1.Print();
	}
}

(3)测试部分

有向图:
在这里插入图片描述
无向图:
在这里插入图片描述

二、图的遍历

1、图的广度优先遍历

(1)简介

首先先明白一下下面的概念性的问题,不过多赘述,直接看简介即可
在这里插入图片描述

我们先利用两个具象的图,来进行创建两个队列,一个队列用来进行进入和弹出,另一个数组用来记录是否被访问过了,防止重复访问。
在这里插入图片描述

(2)代码

		// BFS遍历
		void GraphBFS(const V& v)
		{
			size_t srci = GetIndex(v);

			// 创建一个队列(BFS深度优先遍历)和一个vector数组(用来判断是否是已经被访问过了)
			std::queue<int> q;
			std::vector<bool> visited(_vertex.size(), false);
			q.push(srci); // 先push进一个队列中
			visited[srci] = true;
			while (!q.empty())
			{
				int front = q.front(); // 先取出对列头
				q.pop(); // 弹出头
				std::cout << front << _vertex[front] << std::endl;
				// 遍历一下这个数组当不等于MAX_W的就是链接的,那么就将它们push进队列中
				for (int i = 0; i < _vertex.size(); i++)
				{
					if (_matrix[front][i] != MAX_W) // 那一列的数值不等于MAX_W的话就push并标记
					{
						if (visited[i] == false)
						{
							q.push(i);
							visited[i] = true;
						}
					}
				}
			}
			std::cout << std::endl;
		}

(3)测试用例及测试结果

	void TestGraphDBFS()
	{
		std::string a[] = { "张三", "李四", "王五", "赵六", "周七" };
		Graph<std::string, int> g1(a, sizeof(a) / sizeof(std::string));
		g1.AddEdge("张三", "李四", 100);
		g1.AddEdge("张三", "王五", 200);
		g1.AddEdge("王五", "赵六", 30);
		g1.AddEdge("王五", "周七", 30);
		g1.Print();
		g1.GraphBFS("张三");
	}

在这里插入图片描述

(4)面试问答题

i、题目描述

在这里插入图片描述

ii、思路

一度好友那么就是我们用一个LevelSize来控制一下每层我们进去的个数即可。

iii、代码
		// BFS遍历
		void GraphBFS(const V& v)
		{
			size_t srci = GetIndex(v);

			// 创建一个队列(BFS深度优先遍历)和一个vector数组(用来判断是否是已经被访问过了)
			std::queue<int> q;
			std::vector<bool> visited(_vertex.size(), false);
			int LevelSize = 1; // 控制每次出的个数
			q.push(srci); // 先push进一个队列中
			visited[srci] = true;
			while (!q.empty())
			{
				for (int i = 0; i < LevelSize; i++)
				{
					int front = q.front(); // 先取出对列头
					q.pop(); // 弹出头
					std::cout << front << _vertex[front] << " ";
					// 遍历一下这个数组当不等于MAX_W的就是链接的,那么就将它们push进队列中
					for (int i = 0; i < _vertex.size(); i++)
					{
						if (_matrix[front][i] != MAX_W) // 那一列的数值不等于MAX_W的话就push并标记
						{
							if (visited[i] == false)
							{
								q.push(i);
								visited[i] = true;
							}
						}
					}
				}
				std::cout << std::endl;
				LevelSize = q.size();
			}
			std::cout << std::endl;
		}
iv、测试结果

在这里插入图片描述

2、图的深度优先遍历

(1)简介

一句话来概括:一条路走到黑,走不通了再回溯,直到回溯到第一个点发现第一个点都没的往外走了则结束!

在这里插入图片描述

(2)代码

		// 深度遍历子函数
		void _GraphDFS(size_t srci, std::vector<bool>& visited)
		{
			std::cout << srci << _vertex[srci] << std::endl;
			visited[srci] = true;
			for (size_t i = 0; i < _vertex.size(); i++)
			{
				if (_matrix[srci][i] != MAX_W && visited[i] == false)
				{
					_GraphDFS(i, visited);
				}
			}
		}
		// 深度遍历--用递归解决
		void GraphDFS(const V& src)
		{
			size_t srci = GetIndex(src);
			std::vector<bool> visited(_vertex.size(), false);

			_GraphDFS(srci, visited);
		}

(3)测试用例及测试结果

	void TestGraph1()
	{
		Graph<char, int, INT_MAX, true> g("0123", 4);
		g.AddEdge('0', '1', 1);
		g.AddEdge('0', '3', 4);
		g.AddEdge('1', '3', 2);
		g.AddEdge('1', '2', 9);
		g.AddEdge('2', '3', 8);
		g.AddEdge('2', '1', 5);
		g.AddEdge('2', '0', 3);
		g.AddEdge('3', '2', 6);
		g.Print();
	}
	void TestGraphDBFS()
	{
		std::string a[] = { "张三", "李四", "王五", "赵六", "周七" };
		Graph<std::string, int> g1(a, sizeof(a) / sizeof(std::string));
		g1.AddEdge("张三", "李四", 100);
		g1.AddEdge("张三", "王五", 200);
		g1.AddEdge("王五", "赵六", 30);
		g1.AddEdge("王五", "周七", 30);
		g1.Print();
		g1.GraphBFS("张三");
		g1.GraphDFS("张三");
	}

在这里插入图片描述

3、致命问题:假如说是图本身就不联通,那么DFS和BFS怎么办?

如下图所示,假如说是下面这种情况,上面已有的代码中FHI肯定是没有办法被遍历到的!
在这里插入图片描述
还记得我们有一个vector<bool>数组吗?我们只需要在DFS和BFS结束后了遍历一遍这个数组,false的值再输出不就好了吗?
DFS新增(BFS新增的也是一样的):
在这里插入图片描述

测试用例:
在这里插入图片描述

三、图的最小生成树

1、概念

连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任意一对顶点都是连通的,则称此图为连通图。
强连通图:在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到vi的路径,则称此图是强连通图。
生成树:一个连通图的最小连通子图称作该图的生成树。有n个顶点的连通图的生成树有n个顶点和n-1条边。
最小生成树:构成生成树这些边加起来的权值是最小的。

连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边。

因此构造最小生成树的准则有三条:

  1. 只能使用图中的边来构造最小生成树
  2. 只能使用恰好n-1条边来连接图中的n个顶点
  3. 选用的n-1条边不能构成回路

核心算法思想:贪心算法。

2、Kruskal算法

(1)简介

任给一个有n个顶点的连通网络N={V,E},
首先构造一个由这n个顶点组成、不含任何边的图G={V,NULL},其中每个顶点自成一个连通分量,其次不断从E中取出权值最小的一条边(若有多条任取其一),若该边的两个顶点来自不同的连通分量,则将此边加入到G中。如此重复,直到所有顶点在同一个连通分量上为止。

大白话就是每次都选最小的边呗,那么我们用一个优先级队列(由小到大排列即可),并且我们为了控制不构成回路的话我们就用我们前面写的并查集,每次取出来一个数的时候就放到同一个并查集中,假如说下一个要取的目标和源数不在这个集合中,那么就不联通就可以添加进最小生成树中。

(2)代码实现

		// 先构成一条边
		struct Edge
		{
			size_t _srci;
			size_t _dsti;
			W _w;
			Edge(size_t srci, size_t dsti, const W& w)
				: _srci(srci)
				, _dsti(dsti)
				, _w(w)
			{}
			// 重载大于函数
			bool operator>(const Edge& e) const
			{
				return _w > e._w;
			}
		};
		// Kruskal算法
		W Kruskal(Self& minTree)
		{
			 先初始化一下minTree
			size_t n = _vertex.size();
			minTree._vertex = _vertex;
			minTree._indexMap = _indexMap;
			minTree._matrix.resize(n);
			for (size_t i = 0; i < n; i++)
			{
				minTree._matrix[i].resize(n, MAX_W);
			}

			// 设置一个优先级队列
			std::priority_queue<Edge, std::vector<Edge>, std::greater<Edge>> minque;
			// 一个一个先都存放进去
			for (size_t i = 0; i < n; i++)
			{
				for (size_t j = 0; j < n; j++)
				{
					if (i < j && _matrix[i][j] != MAX_W) // i<j是因为保证只存放矩阵一半,保证没有重复
					{
						minque.push(Edge(i, j, _matrix[i][j]));
					}
				}
			}
			
			// 接下来用来实现算法逻辑,也就是找最小的边加进去同时
			// 满足不能在同一个并查集中,也就是先存放到并查集中
			// 构建一个并查集
			UnionFindSet ufs(n);
			// 选出n条边用来和后面的prime算法做比较
			int size = 0;
			W totalW = W(); // 权值 
			while (!minque.empty()) // 优先级对列不为空的时候
			{
				Edge min = minque.top(); // 先把最小的这条边给取出来
				minque.pop(); // 弹出

				if (!ufs.IsSet(min._srci, min._dsti)) // 判断是不是在一个集合中
				{
					std::cout << _vertex[min._srci] << "->" << _vertex[min._dsti] << ":" << min._w << std::endl;
					minTree._AddEdge(min._srci, min._srci, min._w);
					ufs.Union(min._srci, min._dsti);
					++size;
					totalW += min._w;
				}
				else
				{
					std::cout << "构成回路:";
					std::cout << _vertex[min._srci] << "->" << _vertex[min._dsti] << ":" << min._w << std::endl;
				}
			}
			if (size == n - 1)
			{
				return totalW;
			}
			else
			{
				return W();
			}
			//return 0;
		}

(3)测试用例及测试结果

	void TestGraphMinTree()
	{
		const char* str = "abcdefghi";
		Graph<char, int> g(str, strlen(str));
		g.AddEdge('a', 'b', 4);
		g.AddEdge('a', 'h', 8);
		g.AddEdge('a', 'h', 9);
		g.AddEdge('b', 'c', 8);
		g.AddEdge('b', 'h', 11);
		g.AddEdge('c', 'i', 2);
		g.AddEdge('c', 'f', 4);
		g.AddEdge('c', 'd', 7);
		g.AddEdge('d', 'f', 14);
		g.AddEdge('d', 'e', 9);
		g.AddEdge('e', 'f', 10);
		g.AddEdge('f', 'g', 2);
		g.AddEdge('g', 'h', 1);
		g.AddEdge('g', 'i', 6);
		g.AddEdge('h', 'i', 7);

		Graph<char, int> kminTree;
		std::cout << "Kruskal:" << g.Kruskal(kminTree) << std::endl;
		kminTree.Print();
	}

下面是代码需要更改的地方:
在这里插入图片描述
在这里插入图片描述
测试结果:
在这里插入图片描述

3、prime算法

(1)简介

大白话就是加点法,我们在X集合中不断加入最小的边,再Y集合中不断删去已经加入的目标点,那么就不会变成环状了,我们使用一个优先级队列进行维护每次取最小的,只需要判断是不是构成环即可。
所用到的算法思想是:贪心策略。

在这里插入图片描述

(2)代码

		// Prime算法
		W Prim(Self& minTree, const W& src)
		{
			size_t srci = GetIndex(src);
			size_t n = _vertex.size();

			minTree._vertex = _vertex;
			minTree._indexMap = _indexMap;
			minTree._matrix.resize(n);
			for (size_t i = 0; i < n; ++i)
			{
				minTree._matrix[i].resize(n, MAX_W);
			}
			// 定义两个vector数组
			std::vector<bool> X(n, false);
			std::vector<bool> Y(n, true);
			X[srci] = true; // X集合中的该坐标位置为真 -- 表明从该集合添加
			Y[srci] = false; // Y集合中的该坐标位置为假 -- 表明从该集合中删除掉
			// 从X->Y集合中连接的边里面选出最小的边
			std::priority_queue<Edge, std::vector<Edge>, std::greater<Edge>> minque;
			// 遍历一下数组将这个srci添加进去
			for (int i = 0; i < n; i++)
			{
				if (_matrix[srci][i] != MAX_W)
				{
					minque.push(Edge(srci, i, _matrix[srci][i]));
				}
			}
			// 开始进行prime算法
			W totalW = W();  // 权值
			size_t size = 0; // 用来记录是否到n-1了
			while (!minque.empty())
			{
				// 取出最小的那个元素
				Edge min = minque.top();
				minque.pop();
				// 判断是否为环 -- 即判断是否是在X这个集合当中
				// 最小边的目标点是否是在X集合中
				if (X[min._dsti] == true)
				{
					std::cout << "形成环:";
					std::cout << _vertex[min._srci] << "->" << _vertex[min._dsti] << ":" << min._w << std::endl;
				}
				else
				{
					minTree._AddEdge(min._srci, min._dsti, min._w);
					std::cout << _vertex[min._srci] << "->" << _vertex[min._dsti] << ":" << min._w << std::endl;
					X[min._dsti] = true; // 表示已经加到prime刚好遍历的边当中了
					Y[min._dsti] = false; // 表明这个Y元素中的边已经被取消掉了
					++size;
					totalW += min._w;
					if (size == n - 1)
					{
						break;
					}
					for (size_t i = 0; i < n; i++)
					{
						if (Y[i] && _matrix[min._dsti][i] != MAX_W)
						{
							minque.push(Edge(min._dsti, i, _matrix[min._dsti][i]));
						}
					}
				}
			}
			if (size == n - 1) return totalW;
			else return W();
		}

(3)测试用例及测试结果

	void TestGraphMinTree()
	{
		const char* str = "abcdefghi";
		Graph<char, int> g(str, strlen(str));
		g.AddEdge('a', 'b', 4);
		g.AddEdge('a', 'h', 8);
		g.AddEdge('b', 'c', 8);
		g.AddEdge('b', 'h', 11);
		g.AddEdge('c', 'i', 2);
		g.AddEdge('c', 'f', 4);
		g.AddEdge('c', 'd', 7);
		g.AddEdge('d', 'f', 14);
		g.AddEdge('d', 'e', 9);
		g.AddEdge('e', 'f', 10);
		g.AddEdge('f', 'g', 2);
		g.AddEdge('g', 'h', 1);
		g.AddEdge('g', 'i', 6);
		g.AddEdge('h', 'i', 7);

		/*Graph<char, int> kminTree;
		std::cout << "Kruskal:" << g.Kruskal(kminTree) << std::endl;
		kminTree.Print();*/
		Graph<char, int> pminTree;
		std::cout << "Prime:" << g.Prim(pminTree, 'a') << std::endl;
		pminTree.Print();
	}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2022horse

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值