12.图的遍历and邻接表

本文介绍了图的遍历算法,包括深度优先遍历(DFS)和宽度优先遍历(BFS),并提供了相应的C语言实现。通过队列数据结构实现了BFS,利用邻接矩阵表示图,并转换为邻接表。此外,还提供了测试用例展示如何在给定图上进行DFS和BFS操作。
摘要由CSDN通过智能技术生成

一.图的遍历

1.定义队列(用于广度优先)

typedef struct GraphNodeQueue{
	int* nodes;
	int front;
	int rear;
}GraphNodeQueue, *QueuePtr;
typedef struct Graph{
	int** connections;
	//动态二位数组
	
	int numNodes;
} *GraphPtr;


2.队列

QueuePtr initQueue(){
	QueuePtr resultQueuePtr = (QueuePtr)malloc(sizeof(struct GraphNodeQueue));
	resultQueuePtr->nodes = (int*)malloc(QUEUE_SIZE * sizeof(int));
	resultQueuePtr->front = 0;
	resultQueuePtr->rear = 1;
	return resultQueuePtr;
}

3.添加元素

void enqueue(QueuePtr paraQueuePtr, int paraNode){
	 if ((paraQueuePtr->rear + 1) % QUEUE_SIZE == paraQueuePtr->front % QUEUE_SIZE) {
		printf("Error, trying to enqueue %d. queue full.\r\n", paraNode);
		return;
	} 
	paraQueuePtr->nodes[paraQueuePtr->rear] = paraNode;
	paraQueuePtr->rear = (paraQueuePtr->rear + 1) % QUEUE_SIZE;
 
} 


4.删除循环队列元素

int dequeue(QueuePtr paraQueuePtr){
	if (isQueueEmpty(paraQueuePtr)) {
		printf("Error, empty queue\r\n");
		return NULL;
	} 

	paraQueuePtr->front = (paraQueuePtr->front + 1) % QUEUE_SIZE;

	 	return paraQueuePtr->nodes[paraQueuePtr->front];
}


5.循环申请空间复制图

GraphPtr initGraph(int paraSize, int** paraData) {
	int i, j;
	GraphPtr resultPtr = (GraphPtr)malloc(sizeof(Graph));
	resultPtr -> numNodes = paraSize;
	 resultPtr -> connections = (int**)malloc(paraSize * sizeof(int*));
	for (i = 0; i < paraSize; i ++) {
		resultPtr -> connections[i] = (int*)malloc(paraSize * sizeof(int));
		for (j = 0; j < paraSize; j ++) {
			resultPtr -> connections[i][j] = paraData[i][j];
		} 
	} 
	
	return resultPtr;
} 


6.DFS


void depthFirstTranverse(GraphPtr paraGraphPtr, int paraNode) {
	int i;
	
	visitedPtr[paraNode] = 1;
	printf("%d\t", paraNode);
	//循环遍历  每个节点
	//如果节点相连 并且没有被访问
	//继续DFS
	
	for (i = 0; i < paraGraphPtr -> numNodes; i ++) {
		if (!visitedPtr[i]){ 
			if (paraGraphPtr -> connections[paraNode][i]) {
				depthFirstTranverse(paraGraphPtr, i);
			} 
		} 
	} 
} 


7.widthFirstTranverse


void widthFirstTranverse(GraphPtr paraGraphPtr, int paraStart){
 
	int i, j, tempNode;
	i = 0;
	QueuePtr tempQueuePtr = initQueue();
	printf("%d\t", paraStart);
	visitedPtr[paraStart] = 1;
	enqueue(tempQueuePtr, paraStart);
	while (!isQueueEmpty(tempQueuePtr)) {
		tempNode = dequeue(tempQueuePtr);
		visitedPtr[tempNode] = 1;
		
	
		i ++;

		for (j = 0; j < paraGraphPtr->numNodes; j ++) {
			if (visitedPtr[j]) 
				continue;

			if (paraGraphPtr->connections[tempNode][j] == 0)
				continue;
			
			printf("%d\t", j);
			visitedPtr[j] = 1;
			enqueue(tempQueuePtr, j);
		} 
	} 
} 


8.测试


void testGraphTranverse() {
	int i, j;
	int myGraph[5][5] = { 
		{0, 1, 0, 1, 0},
		{1, 0, 1, 0, 1}, 
		{0, 1, 0, 1, 1}, 
		{1, 0, 1, 0, 0}, 
		{0, 1, 1, 0, 0}};
	int** tempPtr;
	printf("Preparing data\r\n");
		
	tempPtr = (int**)malloc(5 * sizeof(int*));
	for (i = 0; i < 5; i ++) {
		tempPtr[i] = (int*)malloc(5 * sizeof(int));
	} 
	 
	for (i = 0; i < 5; i ++) {
		for (j = 0; j < 5; j ++) {
			 
			tempPtr[i][j] = myGraph[i][j];
		 
		} 
	} 
 
	printf("Data ready\r\n");
	
	GraphPtr tempGraphPtr = initGraph(5, tempPtr);
	printf("num nodes = %d \r\n", tempGraphPtr -> numNodes);
	printf("Graph initialized\r\n");

	printf("Depth first visit:\r\n");
	initTranverse(tempGraphPtr);
	depthFirstTranverse(tempGraphPtr, 4);

	printf("\r\nWidth first visit:\r\n");
	initTranverse(tempGraphPtr);
	widthFirstTranverse(tempGraphPtr, 4);
} 

int main(){
	testGraphTranverse();
	return 1;
} 


2.二.邻接表

1.邻接表


AdjacencyListPtr graphToAdjacentList(GraphPtr paraPtr) {
	//全部申请空间
	
	int i, j, tempNum;
	AdjacentNodePtr p, q;
	tempNum = paraPtr->numNodes;
	AdjacencyListPtr resultPtr = (AdjacencyListPtr)malloc(sizeof(struct AdjacencyList));
	resultPtr->numNodes = tempNum;
	resultPtr->headers = (AdjacencyNode*)malloc(tempNum * sizeof(struct AdjacencyNode));
	
	//填入元素
	
	for (i = 0; i < tempNum; i ++) {
	 
		p = &(resultPtr->headers[i]);
		p->column = -1;
		p->next = NULL;

		for (j = 0; j < tempNum; j ++) {
			if (paraPtr->connections[i][j] > 0) {
				//新建node
				
				q = (AdjacentNodePtr)malloc(sizeof(struct AdjacencyNode));
				q->column = j;
				q->next = NULL;

				//连接
				
				p->next = q;
				p = q;
			} 
		} 
	} 

	return resultPtr;
} 


2.打印邻接表


void printAdjacentList(AdjacencyListPtr paraPtr) {
	int i;
	AdjacentNodePtr p;
	int tempNum = paraPtr->numNodes;

	printf("This is the graph:\r\n");
	for (i = 0; i < tempNum; i ++) {
		p = paraPtr->headers[i].next;
		while (p != NULL) {
			printf("%d, ", p->column);
			p = p->next;
		} 
		printf("\r\n");
	} 
} 


创建:包括建立结点的函数CreatVex(Graph *G),以及GreatUDG(Graph *G) ,GreatUDN(Graph *G) ,GreatDG(Graph *G) GreatDN(Graph *G) 1提示用户输入的基本信息:顶点数,边数以及的基本类型; 2通过for循环语句提示用户输入顶点的值; 3Graph结构体类型包括:AdjList用来存储头结点的数组;int类型vexnum和arcnum,用来表示顶点数和边数的变量;int类型kind,用来存储的类型。边ArcNode结构包括:adjvex,ArcNode *nextarc,int info前者表示指向的结点的下标,后者表示指向结点的下一条边结点,最后的变量为边所带的权值信息; 4根据的类型决定是否要使用边中的info变量; 5提示用户按照正确的形式输入边的端点以及边上的权值信息; 遍历:包括DFSTraverse(Graph G,VertexType vex)以及DFS(Graph G,int v)两个主要的便历函数。前者第二个参数表示开始进行便历的顶点,后者的第二个参数表示对的下标为v的顶点访问。 1遍历前首先建立一个标志数组Visited[],长度为中结点的数目,用来表示是否访问过一结点,访问前全置为0; 2接收用户要求开始访问的顶点,通过函数Adjfound(Graph G,VertexType c)找到改点在的结点中的下标; 3若该下标对应的标志数组的值为0,访问该下标的firstArcNode结点,同时把该结点的在访问标志数组中的值设置为1;若该下标对应的标志数组的值为1,则进行第5步; 4继续进行操作2; 5在标志数组中查找仍为0的项,得到下标值再进行第1步操作;如果都访问过则遍历结束。 6退出程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值