机器学习材料性能预测--基因工程、LAMMPS、ReaxFF反应力场

本课程深入讲解机器学习在材料性能预测中的应用,涵盖基因工程、LAMMPS分子动力学模拟和ReaxFF反应力场计算。通过实例操作,学习者将了解LAMMPS的基础与进阶,ReaxFF的理论与实践,以及深度学习、经典机器学习模型在材料科学中的实战应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【赠无限视频回放】

【LAMMPS分子动力学模拟技术与应用】

1、基础

LAMMPS分子动力学专题从软件基础入门开始,结合实例讲解in文件编写命令,力图大家掌握LAMMPS是什么?能干什么?怎么用?

2、LAMMPS进阶

(石墨烯、金属材料模拟专题)纳米流体模拟专题,热传导模拟专题,多成分体系模拟专题,分子筛纳米膜分离H2/CO2混合气体模拟等多个案例实操带领学习

【ReaxFF反应力场计算模拟技术与应用】

1、ReaxFF基础理论及入门

2、分子建模,ReaxFF可视与计算软件

3、ReaxFF特殊功能介绍(主要针对adf和standalone ReaxFF程序)

4、实例操作:溶液中的质子转移(JPCB,JPCL文献)等

【专题三:机器学习材料性能预测与材料基因工程应用实战】

该专题机器学习以及机器学习在材料领域的应用基本概念开始讲授,让大家明确机器学习方法的适用性和优势,以及有针对性的对python语言基础进行系统学习,为之后构建相应算法模型框架打下基础。进阶分别讲授深度学习神经网络、经典机器学习模型、材料基因工程入门与实战、图神经网络与实践、机器学习+Science五个模块,结合案例实践教学(神经网络在催化领域的应用、预测杂化钙钛矿带隙、有机太阳能电池材料快速筛选、团簇结构数据库构建、同素异形体结构数据库构建、原子性质分析、材料指纹和势函数生成、描述符的向量化生成与特征、图神经网络预测无机材料的性能、分子理化性质的预测、量子点发光材料色温的预测、半导体材料物理性质预测、二维材料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值