YOLOv5、v7改进之二十六:改进特征融合网络PANet为ASFF自适应特征融合网络

本文介绍了如何将YOLOv5的特征融合网络PANet改进为ASFF,以提升目标检测的性能。ASFF通过学习不同层级特征的融合方式,减少不一致信息,增强关键特征。通过四个步骤,即构建ASFF模块、注册模块、修改配置文件和训练,可以在YOLOv5中实现这一改进。实验结果显示,该改进在多数情况下提高了检测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前 言:作为当前先进的深度学习目标检测算法YOLOv5、v7系列算法,已经集合了大量的trick,但是在处理一些复杂背景问题的时候,还是容易出现错漏检的问题。此后的系列文章,将重点对YOLO系列算法的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。

解决问题:原YOLOv5模型特征融合网络为PANet,虽然较FPN能更好的融合不同尺度目标的特征,从而提升效果,但是还存在改进的空间,还有更加先进的特征融合网络。之前出过改进为BIFPN加权双向特征金字塔有兴趣的朋友可以关注我看下之前的博客。现在介绍加入一种金字塔特征融合策略,称为adaptively spatial feature fusion (ASFF),它能够在空域过滤冲突信息以抑制不一致特征,提升网络对不同尺度目标的特征融合能力。

主要原理:

论文:Learning Spatial Fusion for Single-Shot Object Detection​arxiv.org/abs/1911.09516?context=cs.CV

       ASFF用来解决一阶检测器中特征金字塔内部的不一致性。ASFF使网络能够直接学习如何在其他级别对特征进行空间滤波,从而仅保留有用的信息以进行组合。对于某个级别的特征,首先

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值