ELIZA代码复现与历史意义
美英研究团队成功复现了被认为是世界上第一台电子聊天机器人的ELIZA的原始代码。ELIZA由MIT教授Joseph Weizenbaum于1960年代设计,其代码在2021年被MIT档案管理员偶然发现。这款程序采用Lisp语言编写,通过简单的请求/响应机制,模拟治疗师与用户的对话方式。尽管功能简单,ELIZA成为当时技术爱好者的热门工具,标志着人机交互的早期探索。研究人员克服了原始代码适配过时操作系统的挑战,开发了新环境并补充了遗漏的函数。经过清理和调整后,ELIZA程序于2022年底成功运行,展现了作为人机对话开创性技术的潜力。尽管与现代语言模型相比,ELIZA显得简陋,但其历史意义非凡。团队还决定保留代码中的一些原始错误,以保持其真实性。此次复现不仅是对早期计算机技术的致敬,更为后人提供了宝贵的研究素材。
Tenex.AI推出AI驱动网络安全服务
网络安全初创公司Tenex.AI发布了针对Google Cloud环境的托管检测和响应(MDR)服务,旨在通过人工智能技术提升企业网络安全管理效率。该服务分为三个版本,从基础版的网络安全堆栈设置与培训,到顶级版本的Comprehensive MDR,提供全天候监控、漏洞修复和事后分析等全方位支持。Comprehensive MDR还涵盖检测维护与新兴威胁预警,利用AI自动化减少手动操作,加速漏洞响应。同时,Tenex保留12个月的安全日志供漏洞调查使用。Andreessen Horowitz等知名投资者支持该项目,认为其能有效解决网络安全领域的管理低效问题。Tenex计划在未来扩展至法规合规、身份治理和漏洞管理等领域,以提供更多网络安全解决方案。尽管公司短期内专注于有机增长,但也对潜在收购保持开放态度。
通用人工智能预期管理
OpenAI首席执行官Sam Altman近期公开表示,外界对通用人工智能(AGI)的期待过于夸大,OpenAI目前尚未建造AGI,也不会在短期内推出相关产品。他呼吁公众将对AGI的期望降低,避免被炒作误导。这一表态与他此前关于人工智能代理将大规模改变劳动市场的乐观预测形成反差,引发了业界的广泛讨论。Altman早前曾宣称,到2025年,AI代理将参与劳动力市场,推动生产效率,但Fetch.ai首席执行官等专家对此持谨慎态度,认为AGI尚未达到感知水平,短期内难以实现。此外,Altman对OpenAI即将推出的“o3 mini”模型进行了简要提及,但表示其能力有限,与公众期望的重大突破仍有距离。Altman此番发声显然意在对过高的技术期待进行管理,提醒公众冷静看待AI的发展潜力和进展节奏。他的言论不仅凸显了AGI技术挑战的现实性,也引发了关于人工智能领域长期愿景和短期目标的深刻反思。
Sereact融资加速机器人自主创新
德国人工智能初创公司Sereact宣布完成2500万欧元的A轮融资,由Creandum领投,Point Nine和Air Street Capital跟投。这笔资金将用于推进其机器人AI模型和平台的开发,拓展机器人在更多领域的应用。Sereact成立于2021年,专注于开发具备自主学习和实时适应能力的工业和协作机器人。这些机器人无需复杂的编程即可通过视觉变换器技术识别和操作未知物体,从而实现动态任务的高精度处理。其核心技术“PickGPT”模型结合了生成式AI、大型语言模型和视觉AI,使机器人能够理解语音命令、识别复杂物体并灵活执行任务。目前,Sereact的机器人已被宝马、戴姆勒卡车等制造商及多家电商企业广泛使用,用于仓储、分拣、包装等环节。新一轮融资将助力公司探索机器人在物流和制造以外的复杂任务,同时支持移动机器人和类人机器人平台的发展。Sereact的技术突破被视为推动机器人自主化和多场景适应的重要里程碑。
人机半程马拉松,北京即将上演
一场前所未有的人机对决即将在北京大兴拉开帷幕——12,000名人类跑者将与多家高科技企业的人形机器人共同参加半程马拉松。这场21公里的比赛不仅是一场体能较量,更是人类智慧与人工智能技术的一次全面比拼。比赛严格规定机器人必须以双足行走完成全程,身高限制在0.5至2米之间,确保比赛的公平性和真实性。热门机器人选手“天宫”由中国创新团队研发,其时速达10公里,备受关注。而特斯拉的Optimus和波士顿动力的Atlas虽参赛,但速度稍逊于“天宫”。理论时速高达12公里的1X NEO成为可能的黑马。此次赛事象征了中国人工智能和机器人领域的蓬勃发展。2023年,中国占全球机器人安装量的51%,预计到2030年行业产值将达546亿美元。比赛地点北京经济技术开发区已将机器人投入比亚迪工厂工作,并计划未来在田径、足球等运动领域推广机器人应用。这场融合了体育、科技与社会创新的赛事将于四月举行,象征着人工智能与人类共存的新篇章。
DeepSeek发布R1推理模型,代码开放
中国人工智能企业DeepSeek推出R1系列大型语言模型,包括R1和R1-Zero,专为推理任务设计并采用混合专家(MoE)架构,参数规模达6710亿。这一架构通过仅激活特定网络处理输入,大幅降低推理成本。R1在多个基准测试中超越OpenAI的o1模型,而R1-Zero通过强化学习验证了无需监督微调即可获得推理能力。R1系列在LiveCodeBench等基准测试中表现优异,尤其在编程任务中展现卓越能力。R1-Zero尽管存在重复与可读性问题,但通过引入监督微调后的R1模型显著提升了输出质量。DeepSeek还发布了多款从R1蒸馏而来的轻量模型,性能高效,硬件友好。这一发布不仅展示了DeepSeek在推理优化领域的技术优势,也为研究者提供了开源代码,推动了推理任务的进一步发展和应用。
OpenAI推出AI代理工具Operator
据传,OpenAI将于近期发布一款名为Operator的AI工具,具备操作用户电脑并代为执行任务的能力。Operator被定位为一款“代理型”系统,可处理编写代码、预订旅行等复杂任务。据泄露信息,Operator针对macOS系统已添加快捷键选项,并计划在1月上线。虽然OpenAI尚未对此置评,但该工具或将成为AI代理技术的标杆。测试数据显示,Operator在复杂任务如启动虚拟机、创建比特币钱包等方面的成功率尚存不足,但其在Web交互能力上表现优异。市场预计AI代理技术未来潜力巨大,但安全性仍是主要挑战。Operator在安全评估中表现良好,显示出OpenAI对产品责任的重视。随着AI代理市场竞争日益激烈,Operator的推出不仅提升行业热度,也为技术发展设立了新标准。
特朗普撤销拜登AI指导命令
在就职典礼后的首次集会上,特朗普总统签署多项行政命令,其中第一项便撤销了拜登政府的78项命令,包括2023年10月制定的人工智能指导方针。此次撤销举措被视为特朗普政府重构国家政策和经济方向的开端,但对于这些命令的具体原因未作详细说明,仅以名单形式列出。拜登的人工智能指导方针曾提出一系列保护措施和最佳实践,涵盖安全标准、AI水印、消费者保护以及公民权利。该命令还计划减轻AI对劳动力市场的不利影响,推动企业责任,并通过联邦就业门户吸引AI人才。特朗普政府的撤销决定使这些努力面临不确定性。这一举措引发了广泛讨论。一方面,有人担忧撤销AI指导方针可能削弱技术发展的规范性与公正性;另一方面,也有观点认为,特朗普政府可能会重新规划AI政策,以更贴近其经济和科技发展目标的方式推动实施。
ChatGPT将引入记忆与搜索集成功能
OpenAI正在开发一种新技术,将记忆与搜索功能相融合,以实现更高效、个性化的用户互动。这一功能目前仍处于隐藏阶段,但在macOS应用程序中已悄然出现相关选项。一旦激活,ChatGPT将通过存储的记忆,根据用户的历史互动提供更加贴合个人需求的上下文化回答。这项新功能允许用户指示ChatGPT调取与自身相关的特定信息,进一步优化了AI助手的个性化表现。这种技术类似于网页Cookies的工作方式,借助存储数据为用户提供个性化内容。同时,它可能为广告商带来新机遇,但也引发了隐私保护方面的潜在担忧。作为功能全面的人工智能助手,ChatGPT在文本生成、回答问题以及多领域对话中表现出色。通过新增记忆与搜索集成功能,其个性化服务能力将大幅提升,进一步巩固其在个人与专业场景中的不可替代性。然而,这一进步也要求对隐私与数据使用建立更加完善的规范,以确保技术发展的平衡与可持续性。
谷歌即将发布全新Gemini模型更新
谷歌计划于2025年1月23日推出Gemini AI模型的全新版本——“Gemini 2.0 Flash Thinking Exp-0123”,被认为是现有“Exp-1219”模型的升级版。消息由潘伟峰在谷歌黑客马拉松直播中发现并透露。该更新预计将显著提升模型的推理能力,尤其是在快速决策和动态适应任务方面,展现更高效的性能。作为谷歌AI Studio平台战略的一部分,此更新版本可能将多模态功能(如图像和视频理解)与大型语言模型进一步结合,为开发者和研究人员提供更加强大的工具。谷歌AI Studio一直以优化AI工具为核心目标,扩展应用场景以满足多样化需求。“Flash Thinking”命名似乎暗示了对高效推理和动态处理的专注。这一发布距离黑客马拉松的观察仅数日,表明谷歌可能已完成内部测试,计划在不久后向公众开放。这一升级不仅将推动AI性能的提升,还将在各领域的广泛应用中展现更强竞争力。更多具体功能和细节有待进一步披露。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈