赛道 B:人工智能范式的物理化学家
完整版在下面获取
2024长三角数学建模B题完整思路+1-5问可执行代码+运行结果可视化图表https://mbd.pub/o/bread/mbd-ZpWcmJ1q
第一个问题是对题目所给数据进行预处理,明确处理数据的必要性和所采用的处理方法,并尝试通过分子id预测y2。
首先,对题目所给数据进行预处理的必要性在于:数据预处理是数据分析的基础,它可以帮助我们更好地理解数据,发现数据中的规律和特征,为后续建模和分析提供更好的数据基础。在本题中,我们需要对数据进行预处理的主要原因有以下几点:
数据量较大:原始数据集data.csv中有20万个分子的数据,每个分子有103个物理化学性质,这样的数据量对于人工分析来说是非常庞大的,因此需要通过预处理来提取有效的信息。
数据存在缺失值:在实际的数据分析中,经常会遇到数据缺失的情况,而缺失值会影响后续的数据分析和建模结果。因此,需要对数据进行预处理来处理缺失值,以保证后续的分析和建模的准确性。
数据存在噪声:在实际的数据采集过程中,由于各种原因,数据中可能会存在一些噪声,这些噪声会影响后续的数据分析和建模结果。因此,需要对数据进行预处理来去除噪声,以提高后续分析和建模的准确性。
针对以上的原因,我们采用以下的处理方法对数据进行预处理:
数据清洗:首先,我们需要对数据进行清洗,去除数据中的缺失值和噪声。具体来说,我们可以通过填充缺失值或者删除缺失值的方式来处理缺失值,通过平滑或者滤波的方式来去除噪声。
数据变换:为了更好地理解数据,我们可以对数据进行变换,使得数据更加符合我们的分析需求。具体来说,我们可以对数据进行标准化、归一化、对数变换等,以便后续的分析和建模。
特征选择:在数据预处理的过程中,我们可以通过特征选择的方式来提取数据中的有效信息。具体来说,我们可以通过统计学方法、机器学习方法等来选择对预测结果有影响的特征指标,从而提高模型的预测精度。
针对本题中的y2指标,我们可以通过分子id来预测它的值。具体来说,我们可以通过构建一个回归模型来预测y2的值,其中分子id作为自变量,y2作为因变量。通过回归模型,我们可以得到分子id与y2之间的函数关系,从而实现