一、背景
图像压缩的算法多种多样,如 JPG/APEG图像使用JPEG压缩标准,JPEG压缩标准使用了变换编码与熵编码的方式。此外还有基于小波变换的图像压缩算法、分形压缩编码矢量量化压缩编码等。本文采用BP神经网络对灰度图像进行压缩,在保证较好峰值信噪比(PSNR)的情况下,达到了较高的压缩比。
二、神经网络建模
BP神经网络是理论和应用中出现最多的一种人工神经网络模型。它是一种多层前向网络,一般用于数据的分类、拟合等领域。BP网络接受一个输入向量,在输出端给出另一个向量,内在的映射关系通过神经元间的连接权值来体现和保存。
BP神经网络用于压缩的原理如下。
BP网络至少包含一个隐含层,这里只采用一个隐含层,因此整体构成了一个三层的网络。把一组输入模式通过少量的隐含层单元映射到一组输出模式,并使输出模式尽可能等于输入模式。因此,隐含层神经元的值和相应的权值向量可以输出一个与原输入模式相同的向量。当隐含层的神经元个数较少时,就意味着隐含层能用更少的数来表现输入模式,而这实际上就是压缩。
第一层为输入层,中间层为隐含层,网络的映射功能依赖隐含层实现。输入层到隐含层的变换相当于压缩的编码过程;而从隐含层到输出层的变换则相当于解码过程。
三、神经网络压缩的实现
首先,训练BP神经网络
随后, 计算网络输出,并显示原始图像和压缩后重建的图像。